logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (41)
      Books and chapters (5)
  • Year
    • 1998 (2)
      1999 (2)
      2000 (1)
      2001 (2)
      2002 (2)
      2003 (2)
      2004 (6)
      2005 (9)
      2006 (3)
      2007 (7)
      2008 (3)
      2009 (2)
      2010 (1)
      2011 (2)
      2013 (2)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (11)
      Plant J. (6)
      J. Biol. Chem. (4)
      ISHS Acta Hortic. (3)
      Planta (3)
      Adv. Plant Biochem. Mol. Biol. (1)
      Arch. Biochem. Biophys. (1)
      BBA-Proteins Proteomics (1)
      Curr. Opin. Plant Biol. (1)
      FEBS J. (1)
      FEBS Lett. (1)
      J. Nat. Prod. (1)
      King Mongkut\'s Agro-Industry Journal (1)
      Metab. Eng. (1)
      Methods Enzymol. (1)
      Nat. Prod. Commun. (1)
      Nat. Prod. Res. (1)
      Nature (1)
      Plant Biotechnol. J. (1)
      Plant Physiol. (1)
      Proc. Natl. Acad. Sci. U.S.A. (1)
      Tetrahedron Lett. (1)
      Transgenic Res. (1)
      Trends Biotechnol. (1)
  • Author Sorted by frequency and by alphabetical order
    • Wessjohann, L. A. (340)
      Hause, B. (202)
      Schmidt, J. (195)
      Wessjohann, L. (186)
      Brandt, W. (175)
      Porzel, A. (174)
      Wasternack, C. (167)
      Scheel, D. (130)
      Neumann, S. (125)
      Strack, D. (123)
      Arnold, N. (97)
      Lee, J. (81)
      Miersch, O. (81)
      Franke, K. (80)
      Frolov, A. (80)
      Westermann, B. (80)
      Tissier, A. (75)
      Abel, S. (69)
      Hoehenwarter, W. (65)
      Ziegler, J. (64)
      Feussner, I. (63)
      Kaluđerović, G. N. (63)
      Farag, M. A. (62)
      Rivera, D. G. (53)
      Marillonnet, S. (50)
      Rosahl, S. (49)
      Vogt, T. (49)
      Eschen-Lippold, L. (48)
      Quint, M. (48)
      Kutchan, T. M. (46)
      Hussain, H. (45)
      Davari, M. D. (44)
      Adam, G. (42)
      Böttcher, C. (41)
      Weissenborn, M. J. (40)
      Clemens, S. (39)
      Sung, T. V. (39)
      Dissmeyer, N. (37)
      Hause, G. (35)
      Bürstenbinder, K. (34)
      Kramell, R. (34)
      Schliemann, W. (34)
      Milkowski, C. (33)
      Voiniciuc, C. (31)
      Pahnke, J. (30)
      Stenzel, I. (29)
      Trujillo, M. (29)
      Nürnberger, T. (26)
      Wirthmueller, L. (26)
      Balcke, G. U. (25)
      Peters, K. (24)
      Walter, M. H. (24)
      Wray, V. (24)
      Baumert, A. (23)
      Knogge, W. (23)
      Schuster, M. (23)
      Schymanski, E. L. (22)
      Steinbeck, C. (22)
      Fester, T. (21)
      Naumann, C. (21)
      Parthier, B. (21)
      Ruttkies, C. (21)
      Bilova, T. (20)
      Grosse, I. (20)
      Maksimović-Ivanić, D. (20)
      Mijatović, S. (20)
      Rennert, R. (20)
      Salek, R. M. (20)
      Schwaneberg, U. (20)
      Strehmel, N. (20)
      Boland, W. (19)
      Delker, C. (19)
      Flores, R. (19)
      Rocca-Serra, P. (19)
      Gago, S. (18)
      Green, I. R. (18)
      Krohn, M. (18)
      Steinborn, D. (18)
      Westphal, L. (18)
      Braga, A. L. (17)
      Fernández-Niño, M. (17)
      Morgan, I. (17)
      Thuy, T. T. (17)
      Gago-Zachert, S. (16)
      Gasperini, D. (16)
      Laub, A. (16)
      Romeis, T. (16)
      Schnittger, A. (16)
      Strnad, M. (16)
      Vasco, A. V. (16)
      Wagner, C. (16)
      Anh, N. T. H. (15)
      Bruelheide, H. (15)
      Calderón Villalobos, L. I. A. (15)
      Dräger, B. (15)
      Maier, W. (15)
      Majovsky, P. (15)
      Medvedev, S. (15)
      Sansone, S.-A. (15)
      Schmidt, H. (15)
  • Year
  • Type of publication
Search narrowed by: Author Sorted by frequency and by alphabetical order: Kutchan, T. M. Remove all filters
Displaying results 1 to 10 of 46.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5

Publications

Günnewich, N.; Higashi, Y.; Feng, X.; Choi, K.-B.; Schmidt, J.; Kutchan, T. M.; A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate Phytochemistry 91 93-99 (2013) DOI: 10.1016/j.phytochem.2012.07.019
  • Abstract
  • BibText
  • RIS

The bicyclic diterpene (−)-sclareol is accumulated in glandular trichomes in Salvia sclarea (Schmiderer et al., 2008), and is a major terpenoid component of this plant species. It is used as the starting material for Ambrox synthesis, a synthetic ambergris analog used in the flavor and fragrance industry. In order to investigate the formation of sclareol, cDNA prepared from secretory cells of glandular trichomes from S. sclarea inflorescence were randomly sequenced. A putative copalyl diphosphate synthase encoding EST, SscTPS1, was functionally expressed in Escherichia coli. Whereas reaction of geranylgeranyl diphosphate with the putative copalyl diphosphate synthase followed by hydrolysis with alkaline phosphatase yielded a diastereomeric mixture of (13R)- and (13S)-manoyl oxide, HCl hydrolysis yielded (−)-sclareol (1) and 13-epi-sclareol as products. The product of the reaction of SscTPS1 with geranylgeranyl diphosphate was subjected to analysis by LC-negative ion ESI-MS/MS without prior hydrolysis. EPI scans were consistent with copalyl diphosphate to which 18 mass units had added (m/z 467 [M+H]−). The enzymatic reaction was also carried out in the presence of 60% H218O. LC-negative ion ESI-MS/MS analysis established an additional reaction product consistent with the incorporation of 18O. Incubation in the presence of 60% 2H2O resulted in the incorporation of one deuterium atom. These results suggest water capture of the carbocation intermediate, which is known to occur in reactions catalyzed by monoterpene synthases, but has been described only several times for diterpene synthases.

Publications

Nualkaew, N.; Guennewich, N.; Springob, K.; Klamrak, A.; De-Eknamkul, W.; Kutchan, T. M.; Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba Phytochemistry 91 140-147 (2013) DOI: 10.1016/j.phytochem.2012.09.010
  • Abstract
  • BibText
  • RIS

Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888 bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57–85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.

Publications

Díaz Chávez, M. L.; Rolf, M.; Gesell, A.; Kutchan, T. M.; Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana Arch. Biochem. Biophys. 507 186-193 (2011) DOI: 10.1016/j.abb.2010.11.016
  • Abstract
  • BibText
  • RIS

Formation of the methylenedioxy bridge is an integral step in the biosynthesis of benzo[c]phenanthridine and protoberberine alkaloids in the Papaveraceae family of plants. This reaction in plants is catalyzed by cytochrome P450-dependent enzymes. Two cDNAs that encode cytochrome P450 enzymes belonging to the CYP719 family were identified upon interrogation of an EST dataset prepared from 2-month-old plantlets of the Mexican prickly poppy Argemone mexicana that accumulated the benzo[c]phenanthridine alkaloid sanguinarine and the protoberberine alkaloid berberine. CYP719A13 and CYP719A14 are 58% identical to each other and 77% and 60% identical, respectively, to stylopine synthase CYP719A2 of benzo[c]phenanthridine biosynthesis in Eschscholzia californica. Functional heterologous expression of CYP719A14 and CYP719A13 in Spodoptera frugiperda Sf9 cells produced recombinant enzymes that catalyzed the formation of the methylenedioxy bridge of (S)-cheilanthifoline from (S)-scoulerine and of (S)-stylopine from (S)-cheilanthifoline, respectively. Twenty-seven potential substrates were tested with each enzyme. Whereas CYP719A14 transformed only (S)-scoulerine to (S)-cheilanthifoline (Km 1.9 ± 0.3; kcat/Km 1.7), CYP719A13 converted (S)-tetrahydrocolumbamine to (S)-canadine (Km 2.7 ± 1.3; kcat/Km 12.8), (S)-cheilanthifoline to (S)-stylopine (Km 5.2 ± 3.0; kcat/Km 2.6) and (S)-scoulerine to (S)-nandinine (Km 8.1 ± 1.9; kcat/Km 0.7). These results indicate that although CYP719A14 participates in only sanguinarine biosynthesis, CYP719A13 can be involved in both sanguinarine and berberine formation in A. mexicana.

Publications

Gesell, A.; Díaz Chávez, M. L.; Kramell, R.; Piotrowski, M.; Macheroux, P.; Kutchan, T. M.; Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Arge mone mexicana and Berberis wilsoniae in insect cells Planta 233 1185-1197 (2011) DOI: 10.1007/s00425-011-1357-4
  • Abstract
  • BibText
  • RIS

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C–C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.

Publications

Jindaprasert, A.; Samappito, S.; Springob, K.; Schmidt, J.; Gulder, T.; De-Eknamkul, W.; Bringmann, G.; Kutchan, T. M.; In Vitro Plants, Callus and Root Cultures of Plumbago indica and Their Biosynthetic Potential for Plumbagin King Mongkut\'s Agro-Industry Journal 2 53-65 (2010)
  • Abstract
  • BibText
  • RIS

In vitro cultured plants of Plumbago indica L. were established from nodal segments and micropropagated on hormone-free LS medium. These in vitro plantlets produced plumbagin with the content 0.79-0.87 mg g-1 dry weight which was more than half of the content found in the whole roots of greenhouse plants. Root and callus cultures were also initiated from stem and young leaf explants, respectively. The root cultures maintained in hormone-free MS medium accumulated 0.28 mg g-1 plumbagin whereas the callus cultures grown on MS medium supplemented with 1.0 mg l-1 2,4-dichloropenoxyacetic acid (2,4-D) and 0.1 mg l-1 kinetin contained only 0.013 mg g-1 of the compound. In addition to plumbagin, its related compounds plumbagic acid and plumbagic acid glucoside were also found specifically in the root tissues of the micropropagated plantlets and the root cultures. These results suggested the biosynthetic potential for the plumbagin-derived compounds in the tissues of in vitro plants and organ cultures which allows us to use them as materials for studying genes and enzymes involved in the naphthoquinone formation in P. indica.

Publications

Kempe, K.; Higashi, Y.; Frick, S.; Sabarna, K.; Kutchan, T. M.; RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes Phytochemistry 70 579-589 (2009) DOI: 10.1016/j.phytochem.2009.03.002
  • Abstract
  • BibText
  • RIS

Papaver somniferum L. was transformed with an RNAi construct designed to reduce transcript levels of the gene encoding the morphine biosynthetic enzyme, salutaridinol 7-O-acetyltransferase (SalAT). RNA interference of salAT led to accumulation of the intermediate compounds, salutaridine and salutaridinol, in a ratio ranging from 2:1 to 56:1. Along the morphine biosynthetic pathway, salutaridine is stereospecifically reduced by salutaridine reductase (SalR) to salutaridinol, which is subsequently acetylated by SalAT. SalAT transcript was shown by quantitative PCR to be diminished, while salR transcript levels remained unaffected. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between SalR and SalAT, which suggested the occurrence of an enzyme complex and provided an explanation for the unexpected accumulation of salutaridine. Decreased concentrations of thebaine and codeine in latex were also observed, while the morphine levels remained constant compared to concentrations found in untransformed control plants.

Publications

Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chávez, M. L.; Huang, F.-C.; Kutchan, T. M.; CYP719B1 Is Salutaridine Synthase, the C-C Phenol-coupling Enzyme of Morphine Biosynthesis in Opium Poppy J. Biol. Chem. 284 24432-24442 (2009) DOI: 10.1074/jbc.M109.033373
  • Abstract
  • BibText
  • RIS

Morphine is a powerful analgesic natural product produced by the opium poppy Papaver somniferum. Although formal syntheses of this alkaloid have been reported, the morphine molecule contains five stereocenters and a C-C phenol linkage that to date render a total synthesis of morphine commercially unfeasible. The C-C phenol-coupling reaction along the biosynthetic pathway to morphine in opium poppy is catalyzed by the cytochrome P450-dependent oxygenase salutaridine synthase. We report herein on the identification of salutaridine synthase as a member of the CYP719 family of cytochromes P450 during a screen of recombinant cytochromes P450 of opium poppy functionally expressed in Spodoptera frugiperda Sf9 cells. Recombinant CYP719B1 is a highly stereo- and regioselective enzyme; of forty-one compounds tested as potential substrates, only (R)-reticuline and (R)-norreticuline resulted in formation of a product (salutaridine and norsalutaridine, respectively). To date, CYP719s have been characterized catalyzing only the formation of a methylenedioxy bridge in berberine biosynthesis (canadine synthase, CYP719A1) and in benzo[c]phenanthridine biosynthesis (stylopine synthase, CYP719A14). Previously identified phenol-coupling enzymes of plant alkaloid biosynthesis belong only to the CYP80 family of cytochromes. CYP719B1 therefore is the prototype for a new family of plant cytochromes P450 that catalyze formation of a phenol-couple.

Publications

Nomura, T.; Quesada, A. L.; Kutchan, T. M.; The New β-D-Glucosidase in Terpenoid-Isoquinoline Alkaloid Biosynthesis in Psychotria ipecacuanha J. Biol. Chem. 283 34650-34659 (2008) DOI: 10.1074/jbc.M806953200
  • Abstract
  • BibText
  • RIS

Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1α(S)-epimer) is considered to be a part of the reactions for emetine biosynthesis, whereas its 1β(R)-epimer N-deacetylipecoside is converted to ipecoside in P. ipecacuanha. Here, we isolated a cDNA clone Ipeglu1 encoding Ipecac alkaloid β-d-glucosidase from P. ipecacuanha. The deduced protein showed 54 and 48% identities to raucaffricine β-glucosidase and strictosidine β-glucosidase, respectively. Recombinant IpeGlu1 enzyme preferentially hydrolyzed glucosidic Ipecac alkaloids except for their lactams, but showed poor or no activity toward other substrates, including terpenoid-indole alkaloid glucosides. Liquid chromatography-tandem mass spectrometry analysis of deglucosylated products of N-deacetylisoipecoside revealed spontaneous transitions of the highly reactive aglycons, one of which was supposed to be the intermediate for emetine biosynthesis. IpeGlu1 activity was extremely poor toward 7-O-methyl and 6,7-O,O-dimethyl derivatives. However, 6-O-methyl derivatives were hydrolyzed as efficiently as non-methylated substrates, suggesting the possibility of 6-O-methylation prior to deglucosylation by IpeGlu1. In contrast to the strictosidine β-glucosidase that stereospecifically hydrolyzes 3α(S)-epimer in terpenoid-indole alkaloid biosynthesis, IpeGlu1 lacked stereospecificity for its substrates where 1β(R)-epimers were preferred to 1α(S)-epimers, although ipecoside (1β(R)) is a major alkaloidal glucoside in P. ipecacuanha, suggesting the compartmentalization of IpeGlu1 from ipecoside. These facts have significant implications for distinct physiological roles of 1α(S)- and 1β(R)-epimers and for the involvement of IpeGlu1 in the metabolic fate of both of them.

Publications

Jindaprasert, A.; Springob, K.; Schmidt, J.; De-Eknamkul, W.; Kutchan, T. M.; Pyrone polyketides synthesized by a type III polyketide synthase from Drosophyllum lusitanicum Phytochemistry 69 3043-3053 (2008) DOI: 10.1016/j.phytochem.2008.03.013
  • Abstract
  • BibText
  • RIS

To isolate cDNAs involved in the biosynthesis of acetate-derived naphthoquinones in Drosophyllum lusitanicum, an expressed sequence tag analysis was performed. RNA from callus cultures was used to create a cDNA library from which 2004 expressed sequence tags were generated. One cDNA with similarity to known type III polyketide synthases was isolated as full-length sequence and termed DluHKS. The translated polypeptide sequence of DluHKS showed 51–67% identity with other plant type III PKSs. Recombinant DluHKS expressed in Escherichia coli accepted acetyl-coenzyme A (CoA) as starter and carried out sequential decarboxylative condensations with malonyl-CoA yielding α-pyrones from three to six acetate units. However, naphthalenes, the expected products, were not isolated. Since the main compound produced by DluHKS is a hexaketide α-pyrone, and the naphthoquinones in D. lusitanicum are composed of six acetate units, we propose that the enzyme provides the backbone of these secondary metabolites. An involvement of accessory proteins in this biosynthetic pathway is discussed.

Books and chapters

Kutchan, T. M.; Frick, S.; Weid, M.; Engineering Plant Alkaloid Biosynthetic Pathways: Progress and Prospects Adv. Plant Biochem. Mol. Biol. 1 283-310 (2008) DOI: 10.1016/S1755-0408(07)01010-7
  • Abstract
  • BibText
  • RIS

With the successful application of molecular genetic methods to the plant alkaloid field, we now have sophisticated tools at our disposal to study regulation of enzymatic biosynthesis, as well as determining the cellular and subcellular localization of these enzymes. The availability of ever‐increasing numbers of recombinant enzymes has enabled thorough analyses of selected alkaloid biosynthetic enzymes at the biochemical and structural levels. We are just beginning to use this knowledge to metabolically engineer alkaloid metabolism in plants and in in vitro cultures. Multicellular compartmentation of alkaloid pathways must be considered if meaningful metabolic engineering experiments are to be designed; for example, we will need to use promoters that drive transgene expression in the correct cell types. Regulation of these pathways at the gene and enzyme level is complex and there is still much to be learned about metabolite levels, multienzyme complexes, and pathway interconnections, as we systematically overexpress and suppress gene transcription. Today, pathway engineering in plants remains highly variable. When we perturb cellular physiology, metabolite homeostasis and intra‐ and intercellular partitioning can be affected in unpredictable ways. Predictive metabolic engineering to generate plants with tailored alkaloid profiles for basic research and for commercial production is clearly a challenge for the future.

  • 1
  • 2
  • 3
  • 4
  • 5

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail