- Results as:
 - Print view
 - Endnote (RIS)
 - BibTeX
 - Table: CSV | HTML
 
Publications
Publications
Publications
Preprints
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Bitter taste perception cautions humans against the ingestion of potentially toxic compounds. However, current knowledge about natural bitter substances and their activation of human bitter taste receptors (TAS2Rs) is biased toward substances from flowering plants, whereas other sources are underrepresented. Although numerous mushrooms taste bitter, the corresponding substances and receptors are unexplored. Three previously undescribed triterpene glucosides, named oligoporins D−F, together with the known oligoporins A and B, were isolated from Amaropostia stiptica. The structures of oligoporins D−F were determined using spectroscopic analyses. The isolated oligoporins and the bitter indolalkaloid infractopicrin from Cortinarius infractus were functionally screened with all TAS2Rs. For all compounds, at least one responding receptor was identified. Oligoporin D activated TAS2R46 already at a submicromolar concentration and thus belongs to the family of most potent bitter agonists. The addition of mushroom compounds to the list of cognate TAS2R activators lowers the existing bias of knowledge about bitter agonists.
Publications
Several polyphenol-rich Terminalia species (Combretaceae) are known to accelerate wound healing. Recently, the Omani medicinal plant Anogeissus dhofarica (now Terminalia dhofarica) was attributed to the genus Terminalia based on phylogenetic studies. Leaves, bark, and extracts of T. dhofarica are traditionally used for various medicinal purposes, including wound treatment and personal hygiene. In the present study, the phytochemical profile of leaves from T. dhofarica was evaluated by ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Simple phenolics, polyphenolics (e.g., flavonoids and tannins) and their glucosides were characterized as major metabolite classes. In addition, 20 phenolics were isolated and structurally identified. Nine of these compounds were never described before for T. dhofarica. For the first time, we provide complete NMR data for 1-O-galloyl-6-O-p-coumaroyl-d-glucose (1). Biological screening demonstrated moderate efficacy against the Gram-negative bacterium Aliivibrio fischeri, the phytopathogenic fungus Septoria tritici, and the oomycete Phytophthora infestans. In summary, the data expand the knowledge of the phytochemistry of the underexplored species T. dhofarica and underscore its potential for therapeutic applications, particularly in the context of traditional medicine.
Publications
Introduction: CIP, a broad-spectrum antibiotic, is crucial for managing bacterial infections. Its efficacy relies on maintaining high-quality standards, which can be affected by manufacturing, regulatory oversight and storage practices. This study compares the quality of CIP preparations in Vietnam and Nigeria, two nations with contrasting regulatory frameworks, to assess compliance with pharmaceutical standards and identify risks from substandard or falsified medicines.Methods: A total of 46 CIP preparations were analysed, 20 purchased from 13 vendors in Vietnam and 26 from 13 vendors in Nigeria. Data on vendor qualifications and storage conditions were collected. Antibacterial activity was tested using a modified disk diffusion assay, and content and purity were evaluated via reversed-phase HPLC.Results: Vietnam\'s drug outlets showed stricter regulation, with 100% registration and 61.5% staffed by Bachelor of Pharmacy holders, compared with only 23.1% in Nigeria. Temperature and humidity monitoring was universal in Vietnam but minimal in Nigeria (23.1% and 15.4%, respectively). Antimicrobial testing confirmed effectiveness for all but one sample (Vietnam), while Nigerian samples had greater variability. Reversed-phase HPLC revealed seven Nigerian samples (26.9%) with
Preprints
Two connected histopathological hallmarks of Alzheimer’s disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1–42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Publications
Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Publications
The new species Cortinarius steglichii is described from Chilean Nothofagus forest based on morphological and microscopical attributes, molecular phylogeny, and chemical analysis of secondary metabolites. C. steglichii is characterized by abundant, long, ramified cystidia on the lamellar edges and stipe apex, further by a deep violet color reaction after treatment with KOH. As responsible secondary metabolite for the cytoplasmatic color reaction of cystidia and some hyphae, the new diterpenoid steglichon (1) could be recognized, showing also remarkable antibacterial and anticancer activity. Phylogenetic analyses (ITS, LSU, RPB1) confirm the close relationship to species of the Cortinarius dulciolens group.
Publications
Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publications
Hypericum perforatum (Johanniskraut) und verwandte Arten der Gattung Hypericum sind sehr reich an Inhaltsstoffen und besitzen ein breites medizinisches Anwendungsspektrum. Mit Hilfe von NMR- und UHPLC-MS-Analysen wurde ein ungezieltes Metabolitenprofiling von H. perforatum und anderen Hypericum-Arten durchgeführt. Die Anwendung von statistischen Datenanalysen zeigte die Verteilung der bekannten Hauptmetaboliten Hyperforin und Hypericin über verschiedene Sorten und Arten sowie artspezifische Biomarkerverbindungen auf und erlaute die Entdeckung etwa 30 neuer Naturstoffe. Die Korrelation der Metabolitenprofile mit Bioaktivitäts- und Transkriptomdaten ermöglichte die Identifizierung neuer antibiotischer Inhaltsstoffe aus H. coris bzw. die Aufklärung des Biosynthesewegs für die Hypericinproduktion in H. perforatum. Künftige Arbeiten werden darauf abzielen, bessere und selektivere Produzenten von Wirkstoffen, neue Komponenten und alternative Quellen für aus Hypericum gewonnene bioaktive Bestandteile zu finden sowie neue prenylierende Enzyme für biotechnologische Anwendungen bereitzustellen.
Publications
In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop’s tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.
Publications
Hypericum perforatum L. commonly known as Saint John’s Wort (SJW) is an economically important medicinal plant known for accumulating its valuable bioactive compounds in a compartmentalized fashion. The dark glands are very rich in hypericin, and translucent glands are filled with hyperforin. The antibiotic properties of the afore mentioned bioactive compounds make it hard to establish tissue regeneration protocols essential to put in place a transformation platform that is required for testing gene function in this challenging species. In this study, we report the establishment of a regeneration and root induction cycle from different types of explants. The regeneration cycle was set up for the continuous supply of roots and leaf explants for downstream transformation experiments. The most effective medium to obtain multiple shoot-buds from node cultures was MS (Murashige and Skoog, Physiol Plant 15:473–497, 1962) medium supplemented with 0.5 mg L−1 6-Benzylaminopurine (BAP) and 0.5 mg L−1 indole-3-butyric acid (IBA). The same combination yielded copious amounts of shoots from root and leaf explants as well. For rooting the elongated shoots, MS medium devoid of plant growth regulators (PGRs) was sufficient. Nevertheless, addition of a low amount of IBA improved the quantity and quality of roots induced. Additionally, the roots obtained on a medium containing IBA readily developed shoot buds.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

