- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Preprints
Publications
Preprints
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Heterodimeric complexes incorporating the lipase-li ke proteins EDS1 wi th PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in A. thaliana, bolstering of signaling and resistance mediated by cell-s u r face pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. •We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in N. benthamiana. •We do not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad can abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation is sufficient for N. benthamianaTNL (Roq1) immunity.•Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-f orming RNLs remains unknown.
Preprints
Genome editing by RNA-guided nucleases in model species is still hampered by low efficiencies, and isolation of transgene-free individuals often requires tedious PCR screening. Here, we present a toolkit that mitigates these drawbacks for Nicotiana benthamiana and Arabidopsis thaliana. The toolkit is based on an intron-optimized SpCas9-coding gene (zCas9i), which conveys dramatically enhanced editing efficiencies. The zCas9i gene is combined with remaining components of the genome editing system in recipient vectors, which lack only the user-defined guide RNA transcriptional units. Up to 32 guide RNA transcriptional units can be introduced to these recipients by a simple and PCR-free cloning strategy, with the choice of three different RNA polymerase III promoters for guide RNA expression. We developed new markers to aid transgene counter-selection in N. benthamiana, and demonstrate their efficacy for isolation of several genome-edited N. benthamiana lines. In Arabidopsis, we explore the limits of multiplexing by simultaneously targeting 12 genes by 24 sgRNAs. Perhaps surprisingly, the limiting factor in such higher order multiplexing applications is Cas9 availability, rather than recombination or silencing of repetitive sgRNA TU arrays. Through a combination of phenotypic screening and pooled amplicon sequencing, we identify transgene-free duodecuple mutant Arabidopsis plants directly in the T2 generation. This demonstrates high efficiency of the zCas9i gene, and reveals new perspectives for multiplexing to target gene families and to generate higher order mutants.
Publications
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.
Preprints
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.