- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
MqnA, the only chorismate dehydratase known so far, catalyzes the initial step in the biosynthesis of menaquinone via the futalosine pathway. Details of the MqnA reaction mechanism remain unclear. Here, we present crystal structures of Streptomyces coelicolor MqnA and its active site mutants in complex with chorismate and the product 3-enolpyruvyl-benzoate, produced during heterologous expression in Escherichia coli. Together with activity studies, our data are in line with dehydration proceeding via substrate assisted catalysis, with the enol pyruvyl group of chorismate acting as catalytic base. Surprisingly, structures of the mutant Asn17Asp with copurified ligand suggest that the enzyme converts to a hydrolase by serendipitous positioning of the carboxyl group. All complex structures presented here exhibit a closed Venus flytrap fold, with the enzyme exploiting the characteristic ligand binding properties of the fold for specific substrate binding and catalysis. The conformational rearrangements that facilitate complete burial of substrate/product, with accompanying topological changes to the enzyme surface, could foster substrate channeling within the biosynthetic pathway.
Publications
Menaquinone (MK) is an electron carrier molecule essential for respiration in most Gram positive bacteria. A crucial step in MK biosynthesis involves the prenylation of an aromatic molecule, catalyzed by integral membrane prenyltransferases of the UbiA (4‐hydroxybenzoate oligoprenyltransferase) superfamily. In the classical MK biosynthetic pathway, the prenyltransferase responsible is MenA (1,4‐dihydroxy‐2‐naphthoate octaprenyltransferase). Recently, an alternative pathway for formation of MK, the so‐called futalosine pathway, has been described in certain micro‐organisms. Until now, five soluble enzymes (MqnA‐MqnE) have been identified in the first steps. In this study, the genes annotated as ubiA from T. thermophilus and S. lividans were cloned, expressed and investigated for prenylation activity. The integral membrane proteins possess neither UbiA nor MenA activity and represent a distinct class of prenyltransferases associated with the futalosine pathway that we term MqnP. We identify a critical residue within a highly conserved Asp‐rich motif that serves to distinguish between members of the UbiA superfamily.
Publications
An ancient reaction vessel: TobZ carbamoylates the antibiotic tobramycin to form nebramycin 5′. The YrdC‐like domain (blue) catalyzes the formation of the novel intermediate carbamoyladenylate, which is channeled through a common “reaction chamber” to the Kae1‐like domain (brown), site of carbamoyl transfer.
Publications
Ein uraltes Reaktionsgefäß: TobZ carbamoyliert das Antibiotikum Tobramycin unter Bildung von Nebramycin‐5′. Dabei katalysiert die YrdC‐ähnliche Domäne (blau) die Bildung eines intermediären Carbamoyladenylats, das innerhalb einer tunnelartigen Reaktionskammer zur Kae1‐ähnlichen Domäne (braun), dem Ort des Carbamoyltransfers, transferiert wird.
Publications
Acylation is a prevalent chemical modification that to a significant extent accounts for the tremendous diversity of plant metabolites. To catalyze acyl transfer reactions, higher plants have evolved acyltransferases that accept β-acetal esters, typically 1-O-glucose esters, as an alternative to the ubiquitously occurring CoA-thioester-dependent enzymes. Shared homology indicates that the β-acetal ester-dependent acyltransferases are derived from a common hydrolytic ancestor of the Serine CarboxyPeptidase (SCP) type, giving rise to the name Serine CarboxyPeptidase-Like (SCPL) acyltransferases. We have analyzed structure–function relationships, reaction mechanism and sequence evolution of Arabidopsis 1-O-sinapoyl-β-glucose:l-malate sinapoyltransferase (AtSMT) and related enzymes to investigate molecular changes required to impart acyltransferase activity to hydrolytic enzymes. AtSMT has maintained the catalytic triad of the hydrolytic ancestor as well as part of the H-bond network for substrate recognition to bind the acyl acceptor l-malate. A Glu/Asp substitution at the amino acid position preceding the catalytic Ser supports binding of the acyl donor 1-O-sinapoyl-β-glucose and was found highly conserved among SCPL acyltransferases. The AtSMT-catalyzed acyl transfer reaction follows a random sequential bi-bi mechanism that requires both substrates 1-O-sinapoyl-β-glucose and l-malate bound in an enzyme donor–acceptor complex to initiate acyl transfer. Together with the strong fixation of the acyl acceptor l-malate, the acquisition of this reaction mechanism favours transacylation over hydrolysis in AtSMT catalysis. The model structure and enzymatic side activities reveal that the AtSMT-mediated acyl transfer proceeds via a short-lived acyl enzyme complex. With regard to evolution, the SCPL acyltransferase clade most likely represents a recent development. The encoding genes are organized in a tandem-arranged cluster with partly overlapping functions. With other enzymes encoded by the respective gene cluster on Arabidopsis chromosome 2, AtSMT shares the enzymatic side activity to disproportionate 1-O-sinapoyl-β-glucoses to produce 1,2-di-O-sinapoyl-β-glucose. In the absence of the acyl acceptor l-malate, a residual esterase activity became obvious as a remnant of the hydrolytic ancestor. With regard to the evolution of Arabidopsis SCPL acyltransferases, our results suggest early neofunctionalization of the hydrolytic ancestor toward acyltransferase activity and acyl donor specificity for 1-O-sinapoyl-β-glucose followed by subfunctionalization to recognize different acyl acceptors.
Publications
The protein disulfide isomerase-related protein ERp29 is a putative chaperone involved in processing and secretion of secretory proteins. Until now, however, both the structure and the exact nature of interacting substrates remained unclear. We provide for the first time a crystal structure of human ERp29, refined to 2.9 Å, and show that the protein has considerable structural homology to its Drosophila homolog Wind. We show that ERp29 binds directly not only to thyroglobulin and thyroglobulin-derived peptides in vitro but also to the Wind client protein Pipe and Pipe-derived peptides, although it fails to process Pipe in vivo. A monomeric mutant of ERp29 and a D domain mutant in which the second peptide binding site is inactivated also bind protein substrates, indicating that the monomeric thioredoxin domain is sufficient for client protein binding. Indeed, the b domains of ERp29 or Wind, expressed alone, are sufficient for binding proteins and peptides. Interacting peptides have in common two or more aromatic residues, with stronger binding for sequences with overall basic character. Thus, the data allow a view of the two putative peptide binding sites of ERp29 and indicate that the apparent, different processing activity of the human and Drosophila proteins in vivo does not stem from differences in peptide binding properties.
Publications
The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Publications
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.
Publications
In plant secondary metabolism, β‐acetal ester‐dependent acyltransferases, such as the 1‐O ‐sinapoyl‐β‐glucose:l ‐malate sinapoyltransferase (SMT; EC 2.3.1.92), are homologous to serine carboxypeptidases. Mutant analyses and modeling of Arabidopsis SMT (AtSMT) have predicted amino acid residues involved in substrate recognition and catalysis, confirming the main functional elements conserved within the serine carboxypeptidase protein family. However, the functional shift from hydrolytic to acyltransferase activity and structure–function relationship of AtSMT remain obscure. To address these questions, a heterologous expression system for AtSMT has been developed that relies on Saccharomyces cerevisiae and an episomal leu2‐d vector. Codon usage adaptation of AtSMT cDNA raised the produced SMT activity by a factor of approximately three. N‐terminal fusion to the leader peptide from yeast proteinase A and transfer of this expression cassette to a high copy vector led to further increase in SMT expression by factors of 12 and 42, respectively. Finally, upscaling the biomass production by fermenter cultivation lead to another 90‐fold increase, resulting in an overall 3900‐fold activity compared to the AtSMT cDNA of plant origin. Detailed kinetic analyses of the recombinant protein indicated a random sequential bi‐bi mechanism for the SMT‐catalyzed transacylation, in contrast to a double displacement (ping‐pong) mechanism, characteristic of serine carboxypeptidases.