- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The synthesis and applications of 4-isocyanopermethylbutane-1,1,3-triol (IPB) as a new convertible isonitrile (isocyanide) for isocyanide-based multicomponent reactions (IMCRs) like Ugi, Ugi-Smiles, and Passerini reactions are described. The primary products obtained from these IMCRs can be converted into highly activated N-acylpyrroles, which upon treatment with nucleophiles can be transformed into carboxylic acids, esters, amides, alcohols, and olefins. In this sense the reagent can be seen as a neutral carbanion equivalent to formate (HO2C−), and carboxylates or carboxamides etc. (RNu-CO−).
Publications
Cardiolipin (CL) and related diphosphatidyl lipids are hardly accessible because of the complexity of their chemical synthesis. In the present paper, the transphosphatidylation reaction catalyzed by phospholipase D (PLD) from Streptomyces sp. has been proven as an alternative enzyme-assisted strategy for the synthesis of new CL analogs. The formation of this type of compounds from phosphatidylcholine was compared for a series of N- and C2-substituted ethanolamine derivatives as well as non-charged alcohols such as glycerol and ethylene glycol. The rapid exchange of the choline head group by ethanolamine derivatives having a low molecular volume (diethanolamine and serinol) gave rise to an efficient production of the corresponding CL analogs. In contrast, the yields were comparably low in the reaction with bulky nitrogenous acceptor alcohols (triethanolamine, tris(hydroxymethyl)aminomethane, tetrakis(hydroxyethyl)ammonium) or the non-charged alcohols. Therefore, a strong dependence of the conversion of the monophosphatidyl to the diphosphatidyl compound on steric parameters and the head group charge was concluded. The enzyme-assisted strategy was used for the preparation of purified diphosphatidyldiethanolamine and diphosphatidylserinol.
Publications
Starting from previous structure–activity relationship studies of taste modifiers based on homoeriodictyol, dihydrochalcones, deoxybenzoins, and trans-3-hydroxyflavones as obvious analogues were investigated for their masking effect against caffeine. The most active compounds of the newly investigated taste modifiers were phloretin, the related dihydrochalcones 3-methoxy-2′,4,4′-trihydroxydihydrochalcone and 2′,4-dihydroxy-3-methoxydihydrochalcone, and the deoxybenzoin 2-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)ethanone. Starting with the whole set of compounds showing activity >22%, a (Q)SAR pharmacophore model for maskers of caffeine bitterness was calculated to explain the structural requirements. After docking of the pharmacophore into a structural model of the broadly tuned bitter receptor hTAS2R10 and docking of enterolactone and enterodiol as only very weakly related structures, it was possible to predict qualitatively their modulating activity. Enterodiol (25 mg L–1) reduced the bitterness of the 500 mg L–1 caffeine solution by about 30%, whereas enterolactone showed no masking but a slight bitter-enhancing effect.
Publications
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root‐colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen‐fixing bacterium Sinorhizobium meliloti. To obtain a long‐lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate‐induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall‐bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA‐induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Publications
Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion modes, respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual analysis.
Publications
Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.
Publications
[Pt(COMe)2(bpy)] (2; bpy = 2,2′-bipyridine) and [Pt(COMe)2{H(Me)dmg}] (5; H(Me)dmg = MeO–NC(Me)–C(Me)N–OH) were found to react with primary and secondary amines yielding diacetyl platinum(II) complexes with two monodendate amine ligands [Pt(COMe)2(NH2R)2] (R = Bn, 3a; CH2CH2Ph, 3b; Et, 3c; i-Pr, 3d; CH2CHCH2, 3e; Cy, 3f; Bn = benzyl, Cy = cyclohexyl) and [Pt(COMe)2(NHR2)2] (R = Me, 6a; Et, 6b), respectively. The equilibrium of these ligand exchange reactions was investigated by NMR experiments and DFT calculations showing that complex 5 is the more preferable starting complex and a large excess of the amine has to be used. The sterically demanding diisopropylamine was found to react with 5 yielding a thermally highly unstable dinuclear bis(acetyl) bridged complex [{Pt(COMe){NH(i-Pr)2}}2(μ-COMe)2] (7). Analogous reactions with ethylenediamine derivatives resulted in the formation of [Pt(COMe)2(N^N)] (N^N = ethylenediamine, en, 8a; N,N′-dimethylethylenediamine, 8b; N,N-dimethylethylenediamine, 8c; N,N,N′,N′-tetramethylethylenediamine, TMEDA, 8d). All complexes were fully characterized by microanalysis/high-resolution ESI mass spectrometry, by NMR (1H, 13C, 195Pt) and IR spectroscopies as well as by single-crystal X-ray diffraction measurements (3a/3d). Due to the high trans influence of the acetyl ligands, the Pt–N bonds were found to be relatively long (2.164(2)–2.182(3) Å). The resulting weak coordination of the amines gave rise to a decomposition of complexes 3 under CO extrusion yielding carbonyl–methyl complexes.
Publications
The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an “active” NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.
Publications
A convenient synthesis of (6R,7S)-(+)-himachala-9,11-diene, the pheromone of the chrysomelid beetle Phyllotreta striolata is described. The diene is obtained in a single operation by a spontaneous “bromination/dehydrobromination” of 2,6,6,9-tetramethylbicyclo[5.4.0]undec-8-ene. The halogenation/dehalogenation sequence proceeds spontaneously in CCl4, and is less uniform in CH2Cl2 and CHCl3. 1H NMR experiments carried out in presence of the radical scavenger di-tert-butyl-4-methylphenol suggest an ionic mechanism for this reaction. Theoretical calculations demonstrate that the spontaneous reaction profits from the strongly exergonic addition of Br2 to the double bond and an almost neutral energy difference between the starting olefin and the diene pheromone.