- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Changes in root architecture are an important adaptive strategy used by plants in response to limited nutrient availability to increase the odds of acquiring them. The quiescent center (QC) plays an important role by altering the meristem activity causing differentiation and therefore, inducing a determinate growth program. The arabidopsis mutant pdr23 presents primary short root in the presence of nitrate and is inefficient in the use of nucleic acids as a source of phosphorus. In this study the effect of the pdr23 mutation on the QC maintenance under low phosphorus (P) and/or nitrogen is evaluated. QC identity is maintained in wild-type in the absence of nitrate and/or phosphate if nucleic acids can be used as an alternative source of these nutrients, but not in pdr23. The mutant is not able to use nucleic acids efficiently for substitute Pi, determinate growth is observed, similar to wild-type in the total absence of P. In the absence of N pdr23 loses the expression of QC identity marker earlier than wild-type, indicating that not only the response to P is altered, but also to N. The data suggest that the mutation affects a gene involved either in the crosstalk between these nutrients or in a pathway shared by both nutrients limitation response. Moreover loss of QC identity is also observed in wild-type in the absence of N at longer limitation. Less drastic symptoms are observed in lateral roots of both genotypes.
Publications
Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response , pdr2 , mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi‐starvation responses, such as Pi‐responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short‐root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high‐affinity Pi acquisition. Rescue of root meristem activity in Pi‐starved pdr2 by phosphite (Phi), a non‐metabolizable Pi analog, and divided‐root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi‐sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine‐tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.
Publications
Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi‐starvation responses.
Publications
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mmphosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus.
Publications
Plants have evolved elaborate metabolic and developmental adaptations to low phosphorus availability. Biochemical responses to phosphate limitation include increased production and secretion of phosphate-acquisition proteins such as nucleases, acid phosphatases, and high-affinity phosphate transporters. However, the signal transduction pathways that sense phosphate availability and integrate the phosphate-starvation response in plants are unknown. We have devised a screen for conditional mutants in Arabidopsis thaliana (L.) Heynh. to dissect signaling of phosphate limitation. Our genetic screen is based on the facultative ability of wild-type Arabidopsis plants to metabolize exogenous DNA when inorganic phosphate is limiting. After screening 50,000 M2 seedlings, we isolated 22 confirmed mutant lines that showed severely impaired growth on medium containing DNA as the only source of phosphorus, but which recovered on medium containing soluble inorganic phosphate. Characterization of nine such mutant lines demonstrated an inability to utilize either DNA or RNA. One mutant line, psr1 (phosphate starvation response), had significantly reduced activities of phosphate-starvation-inducible isoforms of ribonuclease and acid phosphatase under phosphate-limiting conditions. The data suggest that a subset of the selected mutations impairs the expression of more than one phosphate-starvation-inducible enzyme required for utilization of exogenous nucleic acids, and may thus affect regulatory components of a Pi starvation response pathway in higher plants.