- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Representative compounds with a 1,3‐dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high‐resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2CO and C3O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MSn conditions, allowing a characterization of the corresponding compound type.
Publications
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Publications
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch protein HpaC, which suppresses secretion and translocation of the predicted inner rod protein HrpB2 and promotes secretion of translocon and effector proteins. We previously reported that HrpB2 interacts with HpaC and the cytoplasmic domain of the inner membrane protein HrcU (C. Lorenz, S. Schulz, T. Wolsch, O. Rossier, U. Bonas, and D. Büttner, PLoS Pathog 4:e1000094, 2008, http://dx.doi.org/10.1371/journal.ppat.1000094). However, the molecular mechanisms underlying the control of HrpB2 secretion are not yet understood. Here, we located a T3S and translocation signal in the N-terminal 40 amino acids of HrpB2. The results of complementation experiments with HrpB2 deletion derivatives revealed that the T3S signal of HrpB2 is essential for protein function. Furthermore, interaction studies showed that the N-terminal region of HrpB2 interacts with the cytoplasmic domain of HrcU, suggesting that the T3S signal of HrpB2 contributes to substrate docking. Translocation of HrpB2 is suppressed not only by HpaC but also by the T3S chaperone HpaB and its secreted regulator, HpaA. Deletion of hpaA, hpaB, and hpaC leads to a loss of pathogenicity but allows the translocation of fusion proteins between the HrpB2 T3S signal and effector proteins into leaves of host and non-host plants.IMPORTANCE The T3S system of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for pathogenicity and delivers effector proteins into plant cells. T3S depends on HrpB2, which is a component of the predicted periplasmic inner rod structure of the secretion apparatus. HrpB2 is secreted during the early stages of the secretion process and interacts with the cytoplasmic domain of the inner membrane protein HrcU. Here, we localized the secretion and translocation signal of HrpB2 in the N-terminal 40 amino acids and show that this region is sufficient for the interaction with the cytoplasmic domain of HrcU. Our results suggest that the T3S signal of HrpB2 is required for the docking of HrpB2 to the secretion apparatus. Furthermore, we provide experimental evidence that the N-terminal region of HrpB2 is sufficient to target effector proteins for translocation in a nonpathogenic X. campestris pv. vesicatoria strain.
Publications
BackgroundThe in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining compound database searching and fragmentation prediction for small molecule identification from tandem mass spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest developments to MetFrag and its use in small molecule identification since the original publication.ResultsMetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of reference, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called “suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate ranking. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolution tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combining with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.ConclusionsIn many cases additional information is available from the experimental context to add to small molecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this additional information. The new functions greatly enhance the chance of identification success and have been incorporated into a command line interface in a flexible way designed to be integrated into high throughput workflows. Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome.
Publications
Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little “arm twisting” in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption.
Publications
Immunity against pathogen infection depends on a host's ability to sense invading pathogens and to rapidly trigger defence reactions that block pathogen proliferation. Both plants and animals detect conserved structural motifs of microbe‐specific compounds, so‐called microbe‐associated molecular patterns (MAMPs), through germline‐encoded immune sensors, which are accordingly termed pattern recognition receptors (PRRs) (Akira et al., 2006; Boller and Felix, 2009). Activated PRRs initiate signal transduction and trigger innate immune responses. MAMPs are generally derived from elements essential for microbial fitness and are conserved across species, thus enabling the host to detect a range of potential pathogens. In mammals, innate immune sensing of MAMPs is not only crucial for basal immune responses but is also tightly connected with and required for a subsequent adaptive, antibody‐mediated immunity (Akira et al., 2006; Janeway and Medzhitov, 2002). Plants, lacking an adaptive immune system, have apparently evolved a greater capacity to detect a broader repertoire of MAMPs. Different plant species possess distinct sets of highly specific PRRs, but the downstream signalling pathways are rather conserved and converge on common signalling steps. This allows the transfer of PRRs, even to different plant families, whilst maintaining their functionality and specificity (Zipfel, 2014). This also enables researchers to use well‐studied, genetically amenable model systems for the identification of MAMPs and their respective PRRs. Several examples of interfamily PRR transfer have demonstrated that the introduction of novel PRRs into plant species can confer relevant levels of resistance to otherwise susceptible plants (e.g. Afroz et al., 2011; Hao et al., 2015; Lacombe et al., 2010; Mendes et al., 2010; Schoonbeek et al., 2015; Tripathi et al., 2014). Hence, MAMP sensing by PRRs has great potential for the engineering of disease resistance in crop plants. In recent years, it has therefore become a major task to identify and isolate MAMPs from a range of microorganisms, and their respective PRRs, to study their role in innate immunity and their application potential.
Publications
Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.
Publications
Pyrofomins A-D, four polyoxygenated sesquiterpenoids have been isolated from the methanolic extract of the fruit bodies of Pyrofomes demidoffii. Their structures are elucidated by IR, HR-FTICR-MS, and 2D NMR spectroscopy. Furthermore, the cedrane carbon skeleton of pyrofomin A (1) is confirmed by X-ray crystallographic analysis. The sesquiterpenoids 1–4 show neither cytotoxicity against KB cells nor antimicrobial activity.
Publications
Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(−)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotianasuaveolens cineole synthase and Nicotianalangsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed.
Publications
BackgroundThe Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts.ResultsThe genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type.ConclusionBoth cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.