- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Hypersensitive cell death is an important defense reaction of plants to pathogen infection and is accompanied by lipid peroxidation processes. These may occur non-enzymatically by the action of reactive oxygen species or may be catalyzed by enzymes such as α-dioxygenases, lipoxygenases, or peroxidases. Correlative data showing increases in 9-lipoxygenase products in hyper-sensitively reacting cells have so far suggested that a large part of lipid peroxidation is mediated by a specific set of 9-lipoxygenases. To address the significance of 9-lipoxygenases for this type of pathogen response in potato, RNA interference constructs of a specific pathogen-induced potato 9-lipoxygenase were transferred to potato plants. Significantly reduced 9-lipoxygenase transcript levels were observed in transgenic plants after pathogen treatment. In addition, 9-lipoxygenase activity was hardly detectable, and levels of 9-lipoxygenase-derived oxylipins were reduced up to 12-fold after pathogen infection. In contrast to wild type plants, high levels of non-enzymatically as well as 13-lipoxygenase-derived oxylipins were present in 9-lipoxygenase-deficient plants. From this we conclude that during the normal hypersensitive response in potato, lipid peroxidation may occur as a controlled and directed process that is facilitated by the action of a specific 9-lipoxygenase. If 9-lipoxygenase-mediated formation of hydroperoxides is repressed, autoxidative lipid peroxidation processes and 13-lipoxygenase-mediated oxylipins synthesis become prominent. The unaltered timing and extent of necrosis formation suggests that the origin of lipid hydroperoxides does not influence pathogen-induced cell death in potato.
Publications
Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.
Publications
Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen‐associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep‐13, constitutes a surface‐exposed fragment within a novel calcium‐dependent cell wall transglutaminase (TGase) from Phytophthora sojae . TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep‐13 identified the same amino acids indispensable for both TGase and defense‐eliciting activity. Pep‐13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus‐specific recognition determinant for the activation of plant defense in host and non‐host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
Publications
As part of the response to pathogen infection, potato plants accumulate soluble and cell wall-bound phenolics such as hydroxycinnamic acid tyramine amides. Since incorporation of these compounds into the cell wall leads to a fortified barrier against pathogens, raising the amounts of hydroxycinnamic acid tyramine amides might positively affect the resistance response. To this end, we set out to increase the amount of tyramine, one of the substrates of the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction, by placing a cDNA encoding a pathogen-induced tyrosine decarboxylase from parsley under the control of the 35S promoter and introducing the construct into potato plants via Agrobacterium tumefaciens-mediated transformation. While no alterations were observed in the pattern and quantity of cell wall-bound phenolic compounds in transgenic plants, the soluble fraction contained several new compounds. The major one was isolated and identified as tyrosol glucoside by liquid chromatography–electrospray ionization–high resolution mass spectrometry and NMR analyses. Our results indicate that expression of a tyrosine decarboxylase in potato does not channel tyramine into the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction but rather unexpectedly, into a different pathway leading to the formation of a potential storage compound.Expression of a parsley tyrosine decarboxylase in potato unexpectedly channels tyramine into a pathway leading to the formation of tyrosol glucoside.
Publications
In potato plants induced for systemic resistance by infiltration with Pseudomonas syringae pv. maculicola, 12-oxo-phytodienoic acid (OPDA) accumulated in infiltrated leaves as well as in non-treated leaves of infected plants. In contrast, jasmonic acid (JA) levels increased only in infiltrated leaves, suggesting that the biosynthetic precursor of JA, OPDA, might play a role in systemic acquired resistance.
Publications
Infiltration of potato leaves with the phytopathogenic bacteria Pseudomonas syringae pv. maculicola induces local and systemic defense gene expression as well as increased resistance against subsequent pathogen attacks. By cDNA-AFLP a gene was identified that is activated locally in potato leaves in response to bacterial infiltration and after infection with Phytophthora infestans, the causal agent of late blight disease. The encoded protein has high homology to a phosphate starvation-induced acid phosphatase from tomato. Possibly, decreased phosphate availability after pathogen infection acts as a signal for the activation of the potato phosphatase gene.
Publications
Lipoxygenases are key enzymes in the synthesis of oxylipins and play an important role in the response of plants to wounding and pathogen attack. In cultured potato cells treated with elicitor from Phytophthora infestans, the causal agent of late blight disease, transcripts encoding a linoleate 9-lipoxygenase and a linoleate 13-lipoxygenase accumulate. However, lipoxygenase activity assays and oxylipin profiling revealed only increased 9-lipoxygenase activity and formation of products derived therefrom, such as 9-hydroxy octadecadienoic acid and colneleic acid. Furthermore, the 9-lipoxygenase products 9(S),10(S),11(R)-trihydroxy-12(Z)-octadecenoic and 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid were identified as novel, elicitor-inducible oxylipins in potato, suggesting a role of these compounds in the defense response against pathogen attack. Neither 13-lipoxygenase activity nor 13-lipoxygenase products were detected in higher amounts in potato cells after elicitation. Thus, formation of products by the 9-lipoxygenase pathway, including the enzymes hydroperoxide reductase, divinyl ether synthase, and epoxy alcohol synthase, is preferentially stimulated in cultured potato cells in response to treatment with P. infestanselicitor. Moreover, elicitor-induced accumulation of desaturase transcripts and increased phospholipase A2 activity after elicitor treatment suggest that substrates for the lipoxygenase pathway might be provided by de novo synthesis and subsequent release from lipids of the endomembrane system.
Publications
In elicitor-treated potato cells, 9-lipoxygenase-derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9-hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.
Publications
In order to analyse the amino acid determinants which alter the positional specificity of plant lipoxygenases (LOXs), multiple LOX sequence alignments and structural modelling of the enzyme-substrate interactions were carried out. These alignments suggested three amino acid residues as the primary determinants of positional specificity. Here we show the generation of two plant LOXs with new positional specificities, a Δ-linoleneate 6-LOX and an arachidonate 11-LOX, by altering only one of these determinants within the active site of two plant LOXs. In the past, site-directed-mutagenesis studies have mainly been carried out with mammalian lipoxygenases (LOXs) [1]. In these experiments two regions have been identified in the primary structure containing sequence determinants for positional specificity. Amino acids aligning with the Sloane determinants [2] are highly conserved among plant LOXs. In contrast, there is amino acid hetero-geneity among plant LOXs at the position that aligns with P353 of the rabbit reticulocyte 15-LOX (Borngräber determinants) [3].
This page was last modified on 27 Jan 2025 27 Jan 2025 .

