- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Abstract For G-type ATP-binding cassette (ABC) transporters, a hydrophobic “di-leucine motif” as part of a hydrophobic extracellular gate has been described to separate a large substrate-binding cavity from a smaller upper cavity and proposed to act as a valve controlling drug extrusion. Here, we show that an L704F mutation in the hydrophobic extracellular gate of Arabidopsis ABCG36/PDR8/PEN3 uncouples the export of the auxin precursor indole-3-butyric acid (IBA) from that of the defense compound camalexin (CLX). Molecular dynamics simulations reveal increased free energy for CLX translocation in ABCG36L704F and reduced CLX contacts within the binding pocket proximal to the extracellular gate region. Mutation L704Y enables export of structurally related non-ABCG36 substrates, IAA, and indole, indicating allosteric communication between the extracellular gate and distant transport pathway regions. An evolutionary analysis identifies L704 as a Brassicaceae family-specific key residue of the extracellular gate that controls the identity of chemically similar substrates. In summary, our work supports the conclusion that L704 is a key residue of the extracellular gate that provides a final quality control contributing to ABCG substrate specificity, allowing for balance of growth-defense trade-offs.
Publications
Suberin is a hydrophobic biopolymer that acts as an internal and external diffusion and transpiration barrier in plants. It is involved in two phases of wound healing, i.e. initial closing layer formation and subsequent wound periderm development. Transcriptomic and metabolomic analyses of wounded potato leaf tissue revealed preferential induction of cell wall modifying processes during closing layer formation, accompanied by a highly active defense response. To address the importance of suberin in this process, we generated loss of function mutants by CRISPR-Cas9 editing the suberin transporter gene StABCG1. Both wound-induced StABCG1 transcript levels and suberin formation around wounded leaf tissue were reduced in CRISPR-lines. Moreover, wound-induced tissue damage was characterized by browning of wound-adjacent areas. Transcriptome analyses of these areas revealed up-regulation of genes encoding defense proteins and enzymes of the phenylpropanoid pathway. Levels of hydroxycinnamic acid amides, acting in defense and in cell wall reinforcement, were drastically enhanced in CRISPR compared to control plants. These results suggest that the reduction in suberin formation around wounded tissue leads to a loss of barrier function, resulting in tissue browning due to enhanced exposure to oxygen.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

