- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two‐hybrid screening we have found three previously uncharacterized receptor‐like protein kinases to be Rop GTPase‐interacting molecules: a cysteine‐rich receptor kinase, named NCRK, and two receptor‐like cytosolic kinases from the Arabidopsis RLCK‐VIb family, named RBK1 and RBK2. Uniquely for Rho‐family small GTPases, plant Rop GTPases were found to interact directly with the protein kinase domains. Rop4 bound NCRK preferentially in the GTP‐bound conformation as determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase RBK1 did not phosphorylate Rop4 in vitro , suggesting that the protein kinases are targets for Rop signalling. Bimolecular fluorescence complementation assays demonstrated that Rop4 interacted in vivo with NCRK and RBK1 at the plant plasma membrane. In Arabidopsis protoplasts, NCRK was hyperphosphorylated and partially co‐localized with the small GTPase RabF2a in endosomes. Gene expression analysis indicated that the single‐copy NCRK gene was relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK‐VIb genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBK2 . We show that the developmental context of RBK1 gene expression is predominantly associated with vasculature and is also locally upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the existence of cross‐talk between Rop GTPases and specific receptor‐like kinases through direct molecular interaction.
Publications
0
Publications
Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.
Publications
Oxygenated polyunsaturated fatty acids synthesized via the lipoxygenase pathway play a role in plant responses to pathogen attack. In solanaceous plants, the preferential stimulation of the 9-lipoxygenase pathway in response to pathogen infection leads to the formation of the divinyl ether-containing polyunsaturated fatty acids colneleic and colnelenic acid, as well as hydroxy and trihydroxy polyunsaturated fatty acids. To functionally assess the role of divinyl ethers, transgenic potato plants were generated which express an RNA interference construct directed against the pathogen-inducible 9-divinyl ether synthase. Efficient reduction of 9-divinyl ether synthase transcript accumulation correlated with reduced levels of colneleic and colnelenic acid. However, in response to infection with virulent Phytophthora infestans, the causal agent of late blight disease, no significant differences in pathogen biomass could be detected suggesting that the levels of antimicrobial divinyl ethers are not critical for defense against Phytophthora infestans in a compatible interaction.
Publications
The importance of the signaling compound salicylic acid for basal defense of potato (Solanum tuberosum L. cv. Désirée) against Phytophthora infestans, the causal agent of late blight disease, was assessed using transgenic NahG potato plants which are unable to accumulate salicylic acid. Although the size of lesions caused by P. infestans was not significantly different in wild-type and transgenic NahG plants, real-time polymerase chain reaction analyses revealed a drastic enhancement of pathogen growth in potato plants depleted of salicylic acid. Increased susceptibility of NahG plants correlated with compromised callose formation and reduced early defense gene expression. NahG plants pretreated with the salicylic acid analog 2,6-dichloro-isonicotinic acid allowed pathogen growth to a similar extent as did wild-type plants, indicating that salicylic acid is an important compound required for basal defense of potato against P. infestans.
Publications
In the fungal phylum Ascomycota, the ability to cause disease in plants and animals has been gained and lost repeatedly during phylogenesis1. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease2,3. However, mlo-based disease resistance has been considered a barley-specific phenomenon to date. Here, we demonstrate a conserved requirement for MLO proteins in powdery mildew pathogenesis in the dicotyledonous plant species Arabidopsis thaliana. Epistasis analysis showed that mlo resistance in A. thaliana does not involve the signaling molecules ethylene, jasmonic acid or salicylic acid, but requires a syntaxin, glycosyl hydrolase and ABC transporter4,5,6. These findings imply that a common host cell entry mechanism of powdery mildew fungi evolved once and at least 200 million years ago, suggesting that within the Erysiphales (powdery mildews) the ability to cause disease has been a stable trait throughout phylogenesis.
Publications
Phytohormones are not only instrumental in regulating developmental processes in plants but also play important roles for the plant's responses to biotic and abiotic stresses. In particular, abscisic acid, ethylene, jasmonic acid, and salicylic acid have been shown to possess crucial functions in mediating or orchestrating stress responses in plants. Here, we review the role of salicylic acid and jasmonic acid in pathogen defence responses with special emphasis on their function in the solanaceous plant potato.
Publications
Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity, such as 13-keto-9(Z),11(E),15(Z)-octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly, this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms.
Publications
Nonhost resistance describes the immunity of an entire plant species against nonadapted pathogen species. We report that Arabidopsis PEN2 restricts pathogen entry of two ascomycete powdery mildew fungi that in nature colonize grass and pea species. The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion resistance mechanism. Postinvasion fungal growth is blocked by a separate resistance layer requiring the EDS1-PAD4-SAG101 signaling complex, which is known to function in basal and resistance (R) gene–triggered immunity. Concurrent impairment of pre- and postinvasion resistance renders Arabidopsis a host for both nonadapted fungi.
Publications
The Phytophthora-derived oligopeptide elicitor, Pep-13, originally identified as an inducer of plant defense in the nonhost–pathogen interaction of parsley and Phytophthora sojae, triggers defense responses in potato. In cultured potato cells, Pep-13 treatment results in an oxidative burst and activation of defense genes. Infiltration of Pep-13 into leaves of potato plants induces the accumulation of hydrogen peroxide, defense gene expression and the accumulation of jasmonic and salicylic acids. Derivatives of Pep-13 show similar elicitor activity in parsley and potato, suggesting a receptor-mediated induction of defense response in potato similar to that observed in parsley. However, unlike in parsley, infiltration of Pep-13 into leaves leads to the development of hypersensitive response-like cell death in potato. Interestingly, Pep-13-induced necrosis formation, hydrogen peroxide formation and accumulation of jasmonic acid, but not activation of a subset of defense genes, is dependent on salicylic acid, as shown by infiltration of Pep-13 into leaves of potato plants unable to accumulate salicylic acid. Thus, in a host plant of Phytophthora infestans, Pep-13 is able to elicit salicylic acid-dependent and -independent defense responses.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

