The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and Carolin Apel (IPB)…
Over 600 guests came to the IPB on July 4 for the Long Night of Sciences to learn lots of new things and put their knowledge to the test at our science quiz course. This year, our program was aimed equally at children and…
Our 10th Leibniz Plant Biochemistry Symposium on May 7 and 8 was a great success. This year's theme was new methods and research approaches in natural product chemistry. The excellent presentations on active substances and…
Sugarcane mosaic virus (SCMV) is an important disease in maize, which is emerging in Germany since 1983. Using this pest as a model for the inheritance of oligogenic traits, we clarified the genetic basis for resistance in early maturing European maize germplasm. Screening of 122 adapted European inbred lines identified three completely resistant lines, which were used for further analyses. The genetics of SCMV resistance was investigated by allelism tests in field experiments combined with QTL and bulked segregant analyses (BSA) on the marker level. QTL analyses revealed the presence of two major genes Scm1 and Scm2 plus three minor QTL. Involvement of Scm1 and Scm2 in the inheritance of SCMV resistance could be confirmed by BSA in a second cross. Breeders can make use of tightly linked STS markers for marker-assisted selection (MAS) as well as our SCMV resistant flint lines to improve their elite germplasm. Currently, recurrent backcrossing with phenotypic selection is the most appropriate and cost effective breeding method. With decreasing costs of DNA chip technology, MAS can be competitive with phenotypic selection in the near future. Further objectives of our research are the isolation and cloning of Scm1 and Scm2. To achieve this goal we follow two different approaches. (1) Positional cloning based on more than 500 AFLP primer combinations resulted in Scm1/Scm2 specific markers with a resolution of approximately 0.2 cM in the respective regions. (2) Resistance gene analogues (RGAs), cosegregating with the target genes are used to identify further candidate genes for transformation experiments.