The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and Carolin Apel (IPB)…
Over 600 guests came to the IPB on July 4 for the Long Night of Sciences to learn lots of new things and put their knowledge to the test at our science quiz course. This year, our program was aimed equally at children and…
Our 10th Leibniz Plant Biochemistry Symposium on May 7 and 8 was a great success. This year's theme was new methods and research approaches in natural product chemistry. The excellent presentations on active substances and…
Plants mount a complex array of defense reactions in response to attack by pathogens. Initiation of these events depends on perception and signal transduction of elicitors, which are plant-derived or pathogenderived signals, that give rise to transcriptional activation of defense-related genes as well as to changes in activities of enzymes involved in cell wall reinforcement and oxygen radical formation. An oligopeptide, identified within a 42 kDa glycoprotein elicitor from Phythophthora sojae, activates in parsley cells typical plant defense reactions, enabling researchers to study plant-pathogen interaction at the single cell level. The oligopeptide elicitor was found to be necessary and sufficient to stimulate a complex defense response in parsley cells, comprising H+/Ca2+ influxes, K+/Cl- effluxes, activation of a mitogen-activated protein (MAP) kinase, an oxidative burst, defense-related gene activation, and phytoalexin formation.