The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and Carolin Apel (IPB)…
Over 600 guests came to the IPB on July 4 for the Long Night of Sciences to learn lots of new things and put their knowledge to the test at our science quiz course. This year, our program was aimed equally at children and…
Our 10th Leibniz Plant Biochemistry Symposium on May 7 and 8 was a great success. This year's theme was new methods and research approaches in natural product chemistry. The excellent presentations on active substances and…
Farag, M. A.; Handoussa, H.; Fekry, M. I.; Wessjohann, L. A.;Metabolite profiling in 18 Saudi date palm fruit cultivars and their antioxidant potential via UPLC-qTOF-MS and multivariate data analysesFood Funct.71077-1086(2016)DOI: 10.1039/c5fo01570g
Date palm fruit (Phoenix dactylifera) is not only one of the most economically significant plants in the Middle East, but also valued for its nutritional impact, and for which development of analytical methods is ongoing to help distinguish its many cultivars. This study attempts to characterize the primary and secondary metabolite profiles of 18 date cultivars from Saudi Arabia. A total of 44 metabolites extracted from the fruit peel were evaluated in a UPLC-qTOF-MS based metabolomics analysis including flavonoids, phenolic acids and fatty acids. The predominant flavones were glycosides of luteolin and chrysoeriol, as well as quercetin conjugates, whereas caffeoyl shikimic acid was the main hydroxycinnamic acid conjugate. GC-MS was further utilized to identify the primary metabolites in fruits (i.e. sugars) with glucose and fructose accounting for up to 95% of TIC among most cultivars. PCA and OPLS analyses revealed that flavone versus flavonol distribution in fruit were the main contributors for cultivar segregation. The antioxidant activity of date fruit samples was correlated with their total phenolics as determined by DPPH and CUPRAC assays. Dkheni Saudi and Shalabi Madina cultivars, appearing as the most distant in clustering analyses exhibited the strongest antioxidant effect suggesting that multivariate data analysis could help determine which date cultivars ought to be prioritized for future agricultural development.