The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and Carolin Apel (IPB)…
Over 600 guests came to the IPB on July 4 for the Long Night of Sciences to learn lots of new things and put their knowledge to the test at our science quiz course. This year, our program was aimed equally at children and…
Our 10th Leibniz Plant Biochemistry Symposium on May 7 and 8 was a great success. This year's theme was new methods and research approaches in natural product chemistry. The excellent presentations on active substances and…
Kroj, T.; Rudd, J. J.; Nürnberger, T.; Gäbler, Y.; Lee, J.; Scheel, D.;Mitogen-activated Protein Kinases Play an Essential Role in Oxidative Burst-independent Expression of Pathogenesis-related Genes in ParsleyJ. Biol. Chem.2782256-2264(2003)DOI: 10.1074/jbc.M208200200
Plants are continuously exposed to attack by potential phytopathogens. Disease prevention requires pathogen recognition and the induction of a multifaceted defense response. We are studying the non-host disease resistance response of parsley to the oomycete, Phytophthora sojae using a cell culture-based system. Receptor-mediated recognition of P. sojae may be achieved through a thirteen amino acid peptide sequence (Pep-13) present within an abundant cell wall transglutaminase. Following recognition of this elicitor molecule, parsley cells mount a defense response, which includes the generation of reactive oxygen species (ROS) and transcriptional activation of genes encoding pathogenesis-related (PR) proteins or enzymes involved in the synthesis of antimicrobial phytoalexins. Treatment of parsley cells with the NADPH oxidase inhibitor, diphenylene iodonium (DPI), blocked both Pep-13-induced phytoalexin production and the accumulation of transcripts encoding enzymes involved in their synthesis. In contrast, DPI treatment had no effect upon Pep-13-induced PRgene expression, suggesting the existence of an oxidative burst-independent mechanism for the transcriptional activation ofPR genes. The use of specific antibodies enabled the identification of three parsley mitogen-activated protein kinases (MAPKs) that are activated within the signal transduction pathway(s) triggered following recognition of Pep-13. Other environmental challenges failed to activate these kinases in parsley cells, suggesting that their activation plays a key role in defense signal transduction. Moreover, by making use of a protoplast co-transfection system overexpressing wild-type and loss-of-function MAPK mutants, we show an essential role for post-translational phosphorylation and activation of MAPKs for oxidative burst-independentPR promoter activation.