logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (24)
  • Year
    • 2015 (3)
      2016 (2)
      2017 (3)
      2019 (4)
      2021 (3)
      2022 (6)
      2023 (3)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Wessjohann, L. A. (6)
      Brandt, W. (5)
      Frolov, A. (4)
      Csuk, R. (3)
      Hause, B. (3)
      Loesche, A. (3)
      Negm, A. (3)
      Shaaban, S. (3)
      Ashmawy, A. M. (2)
      Ashour, M. L. (2)
      Blatt-Janmaat, K. L. (2)
      Heller, L. (2)
      Hussain, H. (2)
      Khlestkina, E. (2)
      Krylova, E. (2)
      Leonova, T. (2)
      Mamadalieva, N. Z. (2)
      Medvedev, S. (2)
      Neumann, S. (2)
      Peters, K. (2)
      Smolikova, G. (2)
      Strygina, K. (2)
      Ahmed, D. M. (1)
      Akramov, D. K. (1)
      Alekseeva, V. (1)
      Alencar, S. (1)
      Alonso del Rivero, M. (1)
      Alshammari, E. (1)
      Andrae-Marobela, K. (1)
      Arnold, N. (1)
      Athmer, B. (1)
      Axmann, I. M. (1)
      Babich, O. (1)
      Basnet, A. T. (1)
      Benedito, V. (1)
      Bergau, N. (1)
      Bernardi, W. (1)
      Bilova, T. (1)
      Bin Ware, I. (1)
      Bobach, C. (1)
      Cotinguiba, F. (1)
      Dam, N. M. (1)
      De Armas, G. (1)
      Degtyaryov, E. (1)
      Denkert, A. (1)
      Dolgov, S. (1)
      Dube, M. (1)
      Fischbach, P. (1)
      Francioso, A. (1)
      Gad, H. A. (1)
      Gawenda, N. (1)
      González-Bacerio, J. (1)
      Gorbach, D. (1)
      Grabandt, P. (1)
      Grunewald, S. (1)
      Hose, R. (1)
      Häberli, C. (1)
      Imming, P. (1)
      Izquierdo, M. (1)
      Kahnt, M. (1)
      Kaluđerović, G. N. (1)
      Karasch, J. (1)
      Keiser, J. (1)
      Kysil, E. (1)
      Laub, A. (1)
      Long, C. (1)
      Marillonnet, S. (1)
      Meshalkina, D. (1)
      Miroshnichenko, D. (1)
      Mosca, L. (1)
      Mukhammadiev, E. A. (1)
      Musayeib, N. M. A. (1)
      Méndez, Y. (1)
      Naumann, C. (1)
      Orlova, A. (1)
      Otto, M. (1)
      Palberg, K. (1)
      Pantelić, N. (1)
      Pauly, M. (1)
      Peres, L. (1)
      Pigolev, A. (1)
      Pinto, M. (1)
      Povydysh, M. (1)
      Pushin, A. S. (1)
      Pérez, I. (1)
      Ramírez, V. (1)
      Raphane, B. (1)
      Rivera, D. G. (1)
      Rojas, T. (1)
      Räde, A. (1)
      Sabo, T. J. (1)
      Savchenko, T. (1)
      Schnabel, A. (1)
      Schubert, R. (1)
      Schwarz, S. (1)
      Scott, W. L. (1)
      Seliger, B. (1)
      Seputhe, N. (1)
      Sethebe, B. (1)
      Simon, V. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Plants Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Eur. J. Med. Chem. Remove all filters
Displaying results 1 to 10 of 24.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3

Publications

Peters, K.; Blatt-Janmaat, K. L.; Tkach, N.; Dam, N. M.; Neumann, S.; Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimaging Plants 12 881 (2023) DOI: 10.3390/plants12040881
  • Abstract
  • Internet
  • BibText
  • RIS

Integrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species Riccia glauca, R. sorocarpa, and R. warnstorfii (order Marchantiales, Ricciaceae) with Lunularia cruciata (order Marchantiales, Lunulariacea) as an outgroup. Liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) were integrated with DNA marker-based sequencing of the trnL-trnF region and high-resolution bioimaging. Our untargeted chemotaxonomy methodology enables us to distinguish taxa based on chemophenetic markers at different levels of complexity: (1) molecules, (2) compound classes, (3) compound superclasses, and (4) molecular descriptors. For the investigated Riccia species, we identified 71 chemophenetic markers at the molecular level, a characteristic composition in 21 compound classes, and 21 molecular descriptors largely indicating electron state, presence of chemical motifs, and hydrogen bonds. Our untargeted approach revealed many chemophenetic markers at different complexity levels that can provide more mechanistic insight into phylogenetic delimitation of species within a clade than genetic-based methods coupled with traditional morphology-based information. However, analytical and bioinformatics analysis methods still need to be better integrated to link the chemophenetic information at multiple scales.

Publications

Degtyaryov, E.; Pigolev, A.; Miroshnichenko, D.; Frolov, A.; Basnet, A. T.; Gorbach, D.; Leonova, T.; Pushin, A. S.; Alekseeva, V.; Dolgov, S.; Savchenko, T.; 12-Oxophytodienoate reductase overexpression compromises tolerance to Botrytis cinerea in hexaploid and tetraploid wheat Plants 12 2050 (2023) DOI: 10.3390/plants12102050
  • Abstract
  • Internet
  • BibText
  • RIS

12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.

Publications

Blatt-Janmaat, K. L.; Neumann, S.; Ziegler, J.; Peters, K.; Host tree and geography induce metabolic shifts in the epiphytic liverwort Radula complanata Plants 12 571 (2023) DOI: 10.3390/plants12030571
  • Abstract
  • Internet
  • BibText
  • RIS

Bryophytes are prolific producers of unique, specialized metabolites that are not found in other plants. As many of these unique natural products are potentially interesting, for example, pharmacological use, variations in the production regarding ecological or environmental conditions have not often been investigated. Here, we investigate metabolic shifts in the epiphytic Radula complanata L. (Dumort) with regard to different environmental conditions and the type of phorophyte (host tree). Plant material was harvested from three different locations in Sweden, Germany, and Canada and subjected to untargeted liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) and data-dependent acquisition (DDA-MS). Using multivariate statistics, variable selection methods, in silico compound identification, and compound classification, a large amount of variation (39%) in the metabolite profiles was attributed to the type of host tree and 25% to differences in environmental conditions. We identified 55 compounds to vary significantly depending on the host tree (36 on the family level) and 23 compounds to characterize R. complanata in different environments. Taken together, we found metabolic shifts mainly in primary metabolites that were associated with the drought response to different humidity levels. The metabolic shifts were highly specific to the host tree, including mostly specialized metabolites suggesting high levels of ecological interaction. As R. complanata is a widely distributed generalist species, we found it to flexibly adapt its metabolome according to different conditions. We found metabolic composition to also mirror the constitution of the habitat, which makes it interesting for conservation measures.

Publications

Vendemiatti, E.; Therezan, R.; Vicente, M.; Pinto, M.; Bergau, N.; Yang, L.; Bernardi, W.; Alencar, S.; Zsögön, A.; Tissier, A.; Benedito, V.; Peres, L.; The genetic complexity of type-IV trichome development reveals the steps towards an insect-resistant tomato Plants 11 1309 (2022) DOI: 10.3390/plants11101309
  • Abstract
  • Internet
  • BibText
  • RIS

The leaves of the wild tomato Solanum galapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S. galapagense into cv. Micro-Tom (MT) and created a line named “Galapagos-enhanced trichomes” (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.

Publications

Stellmach, H.; Hose, R.; Räde, A.; Marillonnet, S.; Hause, B.; A new set of Golden-Gate-Based organelle marker plasmids for colocalization studies in plants Plants 11 2620 (2022) DOI: 10.3390/plants11192620
  • Abstract
  • Internet
  • BibText
  • RIS

In vivo localization of proteins using fluorescence-based approaches by fusion of the protein of interest (POI) to a fluorescent protein is a cost- and time-effective tool to gain insights into its physiological function in a plant cell. Determining the proper localization, however, requires the co-expression of defined organelle markers (OM). Several marker sets are available but, so far, the procedure requires successful co-transformation of POI and OM into the same cell and/or several cloning steps. We developed a set of vectors containing markers for basic cell organelles that enables the insertion of the gene of interest (GOI) by a single cloning step using the Golden Gate cloning approach and resulting in POI–GFP fusions. The set includes markers for plasma membrane, tonoplast, nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, plastids, and mitochondria, all labelled with mCherry. Most of them were derived from well-established marker sets, but those localized in plasma membrane and tonoplast were improved by using different proteins. The final vectors are usable for localization studies in isolated protoplasts and for transient transformation of leaves of Nicotiana benthamiana. Their functionality is demonstrated using two enzymes involved in biosynthesis of jasmonic acid and located in either plastids or peroxisomes.

Publications

Smolikova, G.; Strygina, K.; Krylova, E.; Vikhorev, A.; Bilova, T.; Frolov, A.; Khlestkina, E.; Medvedev, S.; Seed-to-seedling transition in Pisum sativum L.: A transcriptomic approach Plants 11 1686 (2022) DOI: 10.3390/plants11131686
  • Abstract
  • Internet
  • BibText
  • RIS

The seed-to-seedling transition is a crucial step in the plant life cycle. The transition occurs at the end of seed germination and corresponds to the initiation of embryonic root growth. To improve our understanding of how a seed transforms into a seedling, we germinated the Pisum sativum L. seeds for 72 h and divided them into samples before and after radicle protrusion. Before radicle protrusion, seeds survived after drying and formed normally developed seedlings upon rehydration. Radicle protrusion increased the moisture content level in seed axes, and the accumulation of ROS first generated in the embryonic root and plumule. The water and oxidative status shift correlated with the desiccation tolerance loss. Then, we compared RNA sequencing-based transcriptomics in the embryonic axes isolated from pea seeds before and after radicle protrusion. We identified 24,184 differentially expressed genes during the transition to the post-germination stage. Among them, 2101 genes showed more prominent expression. They were related to primary and secondary metabolism, photosynthesis, biosynthesis of cell wall components, redox status, and responses to biotic stress. On the other hand, 415 genes showed significantly decreased expression, including the groups related to water deprivation (eight genes) and response to the ABA stimulus (fifteen genes). We assume that the water deprivation group, especially three genes also belonging to ABA stimulus (LTI65, LTP4, and HVA22E), may be crucial for the desiccation tolerance loss during a metabolic switch from seed to seedling. The latter is also accompanied by the suppression of ABA-related transcription factors ABI3, ABI4, and ABI5. Among them, HVA22E, ABI4, and ABI5 were highly conservative in functional domains and showed homologous sequences in different drought-tolerant species. These findings elaborate on the critical biochemical pathways and genes regulating seed-to-seedling transition.

Publications

Orlova, A.; Kysil, E.; Tsvetkova, E.; Meshalkina, D.; Whaley, A.; Whaley, A. O.; Laub, A.; Francioso, A.; Babich, O.; Wessjohann, L. A.; Mosca, L.; Frolov, A.; Povydysh, M.; Phytochemical characterization of water avens (Geum rivale L.) Extracts: Structure assignment and biological activity of the major phenolic constituents Plants 11 2859 (2022) DOI: 10.3390/plants11212859
  • Abstract
  • Internet
  • BibText
  • RIS

Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 μg/mL) was observed; for aqueous fraction—against Staphylococcus aureus SG-511 (MIC 31.2 μg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.

Publications

Gad, H. A.; Mukhammadiev, E. A.; Zengin, G.; Musayeib, N. M. A.; Hussain, H.; Bin Ware, I.; Ashour, M. L.; Mamadalieva, N. Z.; Chemometric analysis based on GC-MS chemical profiles of three Stachys Species from Uzbekistan and their biological activity Plants 11 1215 (2022) DOI: 10.3390/plants11091215
  • Abstract
  • Internet
  • BibText
  • RIS

The chemical composition of the essential oils (EOs) of Stachys byzantina, S. hissarica and S. betoniciflora growing in Uzbekistan were determined, and their antioxidant and enzyme inhibitory activity were assessed. A gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of 143 metabolites accounting for 70.34, 76.78 and 88.63% of the total identified components of S. byzantina, S. hissarica and S. betoniciflora, respectively. Octadecanal (9.37%) was the most predominant in S. betoniciflora. However, n-butyl octadecenoate (4.92%) was the major volatile in S. byzantina. Benzaldehyde (5.01%) was present at a higher percentage in S. hissarica. A chemometric analysis revealed the ability of volatile profiling to discriminate between the studied Stachys species. The principal component analysis plot displayed a clear diversity of Stachys species where the octadecanal and benzaldehyde were the main discriminating markers. The antioxidant activity was evaluated in vitro using 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2-azino bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP), chelating and phosphomolybdenum (PBD). Moreover, the ability of the essential oils to inhibit both acetyl/butyrylcholinesterases (AChE and BChE), α-amylase, α-glucosidase and tyrosinase was assessed. The volatiles from S. hissarica exhibited the highest activity in both the ABTS (226.48 ± 1.75 mg Trolox equivalent (TE)/g oil) and FRAP (109.55 ± 3.24 mg TE/g oil) assays. However, S. betoniciflora displayed the strongest activity in the other assays (174.94 ± 0.20 mg TE/g oil for CUPRAC, 60.11 ± 0.36 mg EDTA equivalent (EDTAE)/g oil for chelating and 28.24 ± 1.00 (mmol TE/g oil) for PBD. Regarding the enzyme inhibitory activity, S. byzantina demonstrated the strongest AChE (5.64 ± 0.04 mg galantamine equivalent (GALAE)/g oil) and tyrosinase inhibitory (101.07 ± 0.60 mg kojic acid equivalent (KAE)/g) activity. The highest activity for BChE (11.18 ± 0.19 mg GALAE/g oil), amylase inhibition (0.76 ± 0.02 mmol acarbose equivalent (ACAE)/g oil) and glucosidase inhibition (24.11 ± 0.06 mmol ACAE/g oil) was observed in S. betoniciflora. These results showed that EOs of Stachys species could be used as antioxidant, hypoglycemic and skincare agents.

Publications

Dube, M.; Raphane, B.; Sethebe, B.; Seputhe, N.; Tiroyakgosi, T.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N.; Andrae-Marobela, K.; Medicinal plant preparations administered by Botswana traditional health practitioners for treatment of worm infections show anthelmintic activities Plants 11 2945 (2022) DOI: 10.3390/plants11212945
  • Abstract
  • Internet
  • BibText
  • RIS

Schistosomiasis and soil-transmitted helminths are some of the priority neglected tropical diseases (NTDs) targeted for elimination by the World Health Organization (WHO). They are prevalent in Botswana and although Botswana has begun mass drug administration with the hope of eliminating soil-transmitted helminths as a public health problem, the prevalence of schistosomiasis does not meet the threshold required to warrant large-scale interventions. Although Botswana has a modern healthcare system, many people in Botswana rely on traditional medicine to treat worm infections and schistosomiasis. In this study, ten plant species used by traditional health practitioners against worm infections were collected and tested against Ancylostoma ceylanicum (zoonotic hookworm), Heligmosomoides polygyrus (roundworm of rodents), Necator americanus (New World hookworm), Schistosoma mansoni (blood fluke) [adult and newly transformed schistosomula (NTS)], Strongyloides ratti (threadworm) and Trichuris muris (nematode parasite of mice) in vitro. Extracts of two plants, Laphangium luteoalbum and Commiphora pyaracanthoides, displayed promising anthelmintic activity against NTS and adult S. mansoni, respectively. L. luteoalbum displayed 85.4% activity at 1 μg/mL against NTS, while C. pyracanthoides displayed 78.5% activity against adult S. mansoni at 10 μg/mL.

Publications

Smolikova, G.; Strygina, K.; Krylova, E.; Leonova, T.; Frolov, A.; Khlestkina, E.; Medvedev, S.; Transition from seeds to seedlings: Hormonal and epigenetic aspects Plants 10 1884 (2021) DOI: 10.3390/plants10091884
  • Abstract
  • Internet
  • BibText
  • RIS

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network—the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes—POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.

  • 1
  • 2
  • 3

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail