logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (21)
  • Year
    • 2003 (1)
      2005 (2)
      2007 (2)
      2008 (2)
      2013 (1)
      2015 (3)
      2016 (4)
      2017 (3)
      2019 (2)
      2023 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Porzel, A. (9)
      Arnold, N. (8)
      Brandt, W. (7)
      Schmidt, J. (7)
      Wessjohann, L. (7)
      Wessjohann, L. A. (6)
      Csuk, R. (3)
      Loesche, A. (3)
      Negm, A. (3)
      Shaaban, S. (3)
      Ashmawy, A. M. (2)
      Heller, L. (2)
      Kramell, R. (2)
      Otto, A. (2)
      Spiteller, P. (2)
      Teichert, A. (2)
      Westermann, B. (2)
      Ahmed, D. M. (1)
      Alonso del Rivero, M. (1)
      Becerra, J. (1)
      Bobach, C. (1)
      Dang, Q. N. (1)
      Davari, M. D. (1)
      De Armas, G. (1)
      Denkert, A. (1)
      Fist, A. J. (1)
      Fobofou, S. A. T. (1)
      Franke, K. (1)
      Fredersdorf, M. (1)
      Frick, S. (1)
      Geissler, T. (1)
      González-Bacerio, J. (1)
      Grabandt, P. (1)
      Herrmann, G. (1)
      Hoppe, J. (1)
      Hussain, H. (1)
      Iranshahi, M. (1)
      Izquierdo, M. (1)
      Kahnt, M. (1)
      Kaluđerović, G. N. (1)
      Karasch, J. (1)
      Krüger, D. (1)
      Kutchan, T. M. (1)
      Lam, Y. T. H. (1)
      Laub, A. (1)
      Lübken, T. (1)
      Mashlab, A. (1)
      Méndez, Y. (1)
      Palberg, K. (1)
      Palfner, G. (1)
      Pantelić, N. (1)
      Pérez, I. (1)
      Quang, D. N. (1)
      Rennert, R. (1)
      Rivera, D. G. (1)
      Rojas, T. (1)
      Sabo, T. J. (1)
      Schliemann, W. (1)
      Schmidts, V. (1)
      Schwarz, S. (1)
      Scott, W. L. (1)
      Seliger, B. (1)
      Shaki, F. (1)
      Simon, V. (1)
      Sobh, M. A. (1)
      Soboleva, A. (1)
      Sommerwerk, S. (1)
      Soto, C. (1)
      Spiteller, M. (1)
      Stadler, M. (1)
      Stanojković, T. P. (1)
      Steglich, W. (1)
      Tennstedt, S. (1)
      Thiele, C. M. (1)
      Valdés-Tresanco, M. E. (1)
      Valiente, P. A. (1)
      Vasco, A. V. (1)
      Wendt, L. (1)
      Wiemann, J. (1)
      Wiese, J. (1)
      Zmejkovski, B. B. (1)
      de León, L. (1)
      de Meijere, A. (1)
      Álvarez-Ginarte, Y. M. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: J. Nat. Prod. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Eur. J. Med. Chem. Remove all filters
Displaying results 1 to 10 of 21.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3

Publications

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86 1373-1384 (2023) DOI: 10.1021/acs.jnatprod.2c00716
  • Abstract
  • Internet
  • BibText
  • RIS

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.

Publications

Méndez, Y.; De Armas, G.; Pérez, I.; Rojas, T.; Valdés-Tresanco, M. E.; Izquierdo, M.; Alonso del Rivero, M.; Álvarez-Ginarte, Y. M.; Valiente, P. A.; Soto, C.; de León, L.; Vasco, A. V.; Scott, W. L.; Westermann, B.; González-Bacerio, J.; Rivera, D. G.; Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics Eur. J. Med. Chem. 163 481-499 (2019) DOI: 10.1016/j.ejmech.2018.11.074
  • Abstract
  • BibText
  • RIS

The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening. By dose-response studies, three compounds were identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited for the porcine ortholog aminopeptidase. The study allowed for the identification of the key structural features required for a high ePepN inhibitory activity. The most potent and selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We predicted that both diastereomers of compound TPM 11 bind to a site distinct from that occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative inhibition mechanism that doesn't involve Zn coordination. On the other hand, the activity landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three identified inhibitors is a potent haemolytic agent, and only two compounds showed moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results point to promising compounds for the future development of rationally designed TPMs as antibacterial agents.

Publications

Shaaban, S.; Ashmawy, A. M.; Negm, A.; Wessjohann, L. A.; Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma Eur. J. Med. Chem. 179 515-526 (2019) DOI: 10.1016/j.ejmech.2019.06.075
  • Abstract
  • BibText
  • RIS

Nineteen organoselenides were synthesized and tested for their intrinsic cytotoxicity in hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7) cell lines and their corresponding selective cytotoxicity (SI) was estimated using normal lung fibroblast (WI-38) cells. Most of the organic selenides exhibited good anticancer activity, and this was more pronounced in HepG2 cells. Interestingly, the naphthoquinone- (5), thiazol- (12), and the azo-based (13) organic selenides demonstrated promising SI (up to 76). Furthermore, the amine 4c, naphthoquinone 5, and azo-based 13 and 15 organic selenides were able to down-regulate the expression of Bcl-2 and up-regulate the expression levels of IL-2, IL-6 and CD40 in HepG2 cells compared to untreated cells. Moreover, most of the synthesized candidates manifested good free radical-scavenging and GPx-like activities comparable to vitamin C and ebselen. The obtained results suggested that some of the presented organoselenium candidates have promising anti-HepG2 and antioxidant activities.

Publications

Wiemann, J.; Karasch, J.; Loesche, A.; Heller, L.; Brandt, W.; Csuk, R.; Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase Eur. J. Med. Chem. 139 222-231 (2017) DOI: 10.1016/j.ejmech.2017.07.081
  • Abstract
  • BibText
  • RIS

Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.

Publications

Heller, L.; Kahnt, M.; Loesche, A.; Grabandt, P.; Schwarz, S.; Brandt, W.; Csuk, R.; Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase Eur. J. Med. Chem. 126 652-668 (2017) DOI: 10.1016/j.ejmech.2016.11.056
  • Abstract
  • BibText
  • RIS

A set of thirtyfive 30-norlupan derivatives (2–36) was prepared from the natural triterpenoid platanic acid (PA), and the hydroxyl group at C-3, the carboxyl group at C-17 and the carbonyl group at C-20 were modified. These derivatives were tested for their inhibitory activity for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) using Ellman's assay. Extra enzyme kinetic studies were performed. The most active compound was (3β, 20R)-3-acetyloxy-20-amino-30-norlupan-28-oate (32) showing a Ki value of 0.01 ± 0.003 μM for BChE. This compound proved to be a selective (FB = 851), mixed-type inhibitor for BChE.

Publications

Loesche, A.; Wiese, J.; Sommerwerk, S.; Simon, V.; Brandt, W.; Csuk, R.; Repurposing N,N'-bis-(arylamidino)-1,4-piperazinedicarboxamidines: An unexpected class of potent inhibitors of cholinesterases Eur. J. Med. Chem. 125 430-434 (2017) DOI: 10.1016/j.ejmech.2016.09.051
  • Abstract
  • BibText
  • RIS

Drug repurposing (=drug repositioning) is an effective way to cut costs for the development of new therapeutics and to reduce the time-to-market time-span. Following this concept a small library of compounds was screened for their ability to act as inhibitors of acetyl- and butyrylcholinesterase. Picloxydine, an established antiseptic, was shown to be an inhibitor for both enzymes. Systematic variation of the aryl substituents led to analogs possessing almost the same good properties as gold standard galantamine hydrobromide.

Publications

Shaaban, S.; Negm, A.; Ashmawy, A. M.; Ahmed, D. M.; Wessjohann, L. A.; Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma Eur. J. Med. Chem. 122 55-71 (2016) DOI: 10.1016/j.ejmech.2016.06.005
  • Abstract
  • BibText
  • RIS

Novel tetrazole-based diselenides and selenoquinones were synthesized via azido-Ugi and sequential nucleophilic substitution (SN) strategy. Molecular docking study into mammalian TrxR1 was used to predict the anticancer potential of the newly synthesized compounds. The cytotoxic activity of the compounds was evaluated using hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7) cancer cells and compared with their cytotoxicity in normal fibroblast (WI-38) cells. The corresponding redox properties of the synthesized compounds were assessed employing 2,2-diphenyl-1-picrylhydrazyl (DPPH), glutathione peroxidase (GPx)-like activity and bleomycin dependent DNA damage. In general, diselenides showed preferential cytotoxicity to HepG2 compared to MCF-7 cells. These compounds exhibited also good GPx catalytic activity compared to ebselen (up to 5 fold). Selenoquinones 18, 21, 22 and 23 were selected to monitor the expression levels of caspase-8, Bcl-2 and Ki-67 molecular biomarkers. Interestingly, these compounds downregulated the Bcl-2 and Ki-67 expression levels and activated the expression of caspase-8 in HepG2 cells compared to untreated cells. These results indicate that some of the newly synthesized compounds possess anti-HepG2 activity.

Publications

Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N.; Structure and Absolute Configuration of Pseudohygrophorones A12 and B12, Alkyl Cyclohexenone Derivatives from Hygrophorus abieticola (Basidiomycetes) J. Nat. Prod. 79 74-80 (2016) DOI: 10.1021/acs.jnatprod.5b00675
  • Abstract
  • BibText
  • RIS

Pseudohygrophorones A(12) (1) and B(12) (2), the first naturally occurring alkyl cyclohexenones from a fungal source, and the recently reported hygrophorone B(12) (3) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one- and two-dimensional NMR spectroscopic analysis as well as ESI-HRMS measurements. The absolute configuration of the three stereogenic centers in the diastereomeric compounds 1 and 2 was established with the aid of (3)JH,H and (4)JH,H coupling constants, NOE interactions, and conformational analysis in conjunction with quantum chemical CD calculations. It was concluded that pseudohygrophorone A(12) (1) is 4S,5S,6S configured, while pseudohygrophorone B(12) (2) was identified as the C-6 epimer of 1, corresponding to the absolute configuration 4S,5S,6R. In addition, the mass spectrometric fragmentation behavior of 1-3 obtained by the higher energy collisional dissociation method allows a clear distinction between the pseudohygrophorones (1 and 2) and hygrophorone B(12) (3). The isolated compounds 1-3 exhibited pronounced activity against phytopathogenic organisms.

Publications

Otto, A.; Laub, A.; Wendt, L.; Porzel, A.; Schmidt, J.; Palfner, G.; Becerra, J.; Krüger, D.; Stadler, M.; Wessjohann, L.; Westermann, B.; Arnold, N.; Chilenopeptins A and B, Peptaibols from the Chilean Sepedonium aff. chalcipori KSH 883 J. Nat. Prod. 79 929-938 (2016) DOI: 10.1021/acs.jnatprod.5b01018
  • Abstract
  • BibText
  • RIS

The Chilean Sepedonium aff. chalcipori strain KSH 883, isolated from the endemic Boletus loyo Philippi, was studied in a polythetic approach based on chemical, molecular, and biological data. A taxonomic study of the strain using molecular data of the ITS, EF1-α, and RPB2 barcoding genes confirmed the position of the isolated strain within the S. chalcipori clade, but also suggested the separation of this clade into three different species. Two new linear 15-residue peptaibols, named chilenopeptins A (1) and B (2), together with the known peptaibols tylopeptins A (3) and B (4) were isolated from the semisolid culture of strain KSH 883. The structures of 1 and 2 were elucidated on the basis of HRESIMS(n) experiments in conjunction with comprehensive 1D and 2D NMR analysis. Thus, the sequence of chilenopeptin A (1) was identified as Ac-Aib(1)-Ser(2)-Trp(3)-Aib(4)-Pro(5)-Leu(6)-Aib(7)-Aib(8)-Gln(9)-Aib(10)-Aib(11)-Gln(12)-Aib(13)-Leu(14)-Pheol(15), while chilenopeptin B (2) differs from 1 by the replacement of Trp(3) by Phe(3). Additionally, the total synthesis of 1 and 2 was accomplished by a solid-phase approach, confirming the absolute configuration of all chiral amino acids as l. Both the chilenopeptins (1 and 2) and tylopeptins (3 and 4) were evaluated for their potential to inhibit the growth of phytopathogenic organisms.

Publications

Fobofou, S. A. T.; Franke, K.; Porzel, A.; Brandt, W.; Wessjohann, L. A.; Tricyclic Acylphloroglucinols from Hypericum lanceolatum and Regioselective Synthesis of Selancins A and B J. Nat. Prod. 79 743-753 (2016) DOI: 10.1021/acs.jnatprod.5b00673
  • Abstract
  • BibText
  • RIS

The chemical investigation of the chloroform extract of Hypericum lanceolatum guided by 1H NMR, ESIMS, and TLC profiles led to the isolation of 11 new tricyclic acylphloroglucinol derivatives, named selancins A–I (1–9) and hyperselancins A and B (10 and 11), along with the known compound 3-O-geranylemodin (12), which is described for a Hypericum species for the first time. Compounds 8 and 9 are the first examples of natural products with a 6-acyl-2,2-dimethylchroman-4-one core fused with a dimethylpyran unit. The new compounds 1–9 are rare acylphloroglucinol derivatives with two fused dimethylpyran units. Compounds 10 and 11 are derivatives of polycyclic polyprenylated acylphloroglucinols related to hyperforin, the active component of St. John’s wort. Their structures were elucidated by UV, IR, extensive 1D and 2D NMR experiments, HRESIMS, and comparison with the literature data. The absolute configurations of 5, 8, 10, and 11 were determined by comparing experimental and calculated electronic circular dichroism spectra. Compounds 1 and 2 were synthesized regioselectively in two steps. The cytotoxicity of the crude extract (88% growth inhibition at 50 μg/mL) and of compounds 1–6, 8, 9, and 12 (no significant growth inhibition up to a concentration of 10 mM) against colon (HT-29) and prostate (PC-3) cancer cell lines was determined. No anthelmintic activity was observed for the crude extract.

  • 1
  • 2
  • 3

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail