- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.
Publications
Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.
Publications
CP (cisplatin) and mesoporous silica SBA-15 (Santa Barbara amorphous 15) loaded with CP (→SBA-15|CP) were tested in vitro and in vivo against low metastatic mouse melanoma B16F1 cell line. SBA-15 only, as drug carrier, is found to be not active, while CP and SBA-15|CP revealed high cytotoxicity in lower μM range. The activity of SBA-15|CP was found similar to the activity of CP alone. Both CP and SBA-15|CP induced inhibition of cell proliferation (carboxyfluorescein succinimidyl ester - CFSE assay) along with G2/M arrest (4′,6-diamidino-2-phenylindole - DAPI assay). Apoptosis (Annexin V/ propidium iodide - PI assay), through caspase activation (apostat assay) and nitric oxide (NO) production (diacetate(4-amino-5-methylamino-2′,7′-difluorofluorescein-diacetat) - DAF FM assay), was identified as main mode of cell death. However, slight elevated autophagy (acridine orange - AO assay) was detected in treated B16F1 cells. CP and SBA-15|CP did not affect production of ROS (reactive oxygen species) in B16F1 cells. Both SBA-15|CP and CP induced in B16F1 G2 arrest and subsequent senescence. SBA-15|CP, but not CP, blocked the growth of melanoma in C57BL/6 mice. Moreover, hepato- and nephrotoxicity in SBA-15|CP treated animals were diminished in comparison to CP confirming multiply improved antitumor potential of immobilized CP. Outstandingly, SBA-15 boosted in vivo activity and diminished side effects of CP.
Publications
Two novel Co(II) fenamato complexes containing bathocuproine (bcp), namely [Co(bcp)(flu)2] (1) and [Co(bcp)(nif)2] (2) (flu = flufenamato, nif = niflumato) were synthesized and characterized by elemental analysis, single-crystal X-ray structure analysis as well as absorption and fluorescence spectroscopy. Investigation of their molecular structure revealed that both complexes are isostructural and form analogous complex molecules, with a Co(II) atom hexacoordinated by two nitrogen atoms of bcp and four oxygen atoms of two chelate bonded flu (1) and nif (2) ligands in a distorted octahedral arrangement. Surprisingly, the results of cytotoxicity experiments on four cancer cell lines (HeLa, HT-29, PC-3 and MCF-7) have revealed that despite similar structure of the complexes, the nif complex exhibits significantly higher activity, being the most effective against the PC-3 cell line (IC50 (MTT) = 6.11 ± 1.95 μM). Further studies performed on PC-3 cell line have shown that the mechanism of the cytotoxic action of nif complex (2) might involve activation of autophagic processes and apoptosis, while for its flu analogue (1) apoptosis was detected.
Publications
Two novel triphenyltin(IV) compounds, [Ph3SnL1] (L1 = 2-(5-(4-fluorobenzylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (1)) and [Ph3SnL2] (L2 = 2-(5-(5-methyl-2-furfurylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (2)) were synthesized and characterized by FT-IR, (1H and 13C) NMR spectroscopy, mass spectrometry, and elemental microanalysis. The in vitro anticancer activity of the synthesized organotin(IV) compounds was determined against four tumor cell lines: PC-3 (prostate), HT-29 (colon), MCF-7 (breast), and HepG2 (hepatic) using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. The IC50 values are found to be in the range from 0.11 to 0.50 μM. Compound 1 exhibits the highest activity toward PC-3 cells (IC50 = 0.115 ± 0.009 μM; CV assay). The tin and platinum uptake in PC-3 cells showed a threefold lower uptake of tin in comparison to platinum (as cisplatin). Together with its higher activity this indicates a much higher cell inhibition potential of the tin compounds (calculated to ca. 50 to 100 times). Morphological analysis suggested that the compounds induce apoptosis in PC-3 cells, and flow cytometry analysis revealed that 1 and 2 induce autophagy as well as NO (nitric oxide) production.
Publications
The cullin‐RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN. Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin‐conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN. The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF. Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1. We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.
Publications
SBA-15 (Santa Barbara Amorphous 15) mesoporous silica and its functionalized form (with 3-mercaptopropyltriethoxysilane) SBA-15~SH were used as carriers for [Ru(η6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] complex, denoted as [Ru]. Prepared mesoporous silica nanomaterials were characterized by traditional methods. Materials without [Ru] complex did not show any cytotoxic activity against melanoma B16 and B16-F10 cell lines. On the contrary, materials containing [Ru] such as SBA-15|[Ru] and SBA-15~SH|[Ru], exhibited very high activity against tested tumor cell lines, moreover with similar inhibitory potential. According to the loaded amount of the [Ru] in SBA-15|[Ru] and SBA-15~SH|[Ru] the IC50 values are 1–2μM depending on the test used, thus in comparison to [Ru] alone the activity of nanomaterials containing [Ru] are elevated 3–6 times in vitro. However, the mechanism of apoptosis induction differs for these two mesoporous silica. Unlike reference [Ru] compound and SBA-15~SH|[Ru], SBA-15|[Ru] induces high caspase activation. Discrepancy in mechanism of drugs action at intracellular level points towards an influence of functionalization as well as availability of the drug. Moreover, both SBA-15|[Ru] and SBA-15~SH|[Ru] similarly to [Ru] are declining autophagy in B16 cell line.
Publications
Four novel gold(III) complexes of general formulae [AuCl2{(S,S)-R2eddl}]PF6 (R2eddl = O,O′-dialkyl-(S,S)-ethylenediamine-N,N′-di-2-(4-methyl)pentanoate, R = n-Pr, n-Bu, n-Pe, i-Bu; 1–4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N′-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24 h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC50: 5.04–6.51 μM). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner.
Publications
[Ru(η6-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym = cymene; dpa = 2,2′-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η6-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4+ Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 1 might contribute to the overall therapeutic properties of the complex.
Publications
Natural hammerhead ribozymes are mostly found in some viroid and viroid‐like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis‐acting hammerheads self‐cleave much faster than trans‐acting derivatives and other reported artificial hammerheads. Moreover, modifications of the peripheral loops 1 and 2 of one of these natural hammerheads induced a >100‐fold reduction of the self‐cleavage constant, whereas engineering a trans‐acting artificial hammerhead into a cis derivative by introducing a loop 1 had no effect. These data show that regions external to the central conserved core of natural hammerheads play a role in catalysis, and suggest the existence of tertiary interactions between these peripheral regions. The interactions, determined by the sequence and size of loops 1 and 2 and most likely of helices I and II, must result from natural selection and should be studied in order to better understand the hammerhead requirements in vivo.