- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.
Publications
A protocol for synthesizing triazole-containing pyrazolines and pyrazoles selectively using trifluoromethylated 5-(1,2,3-triazol-1-yl)enones as starting materials, is reported. The selectivity of the reaction was controlled by the nature of the hydrazine or derivative used: free hydrazines furnished the 1,5-regiosiomer exclusively in yields up to 98%, whereas protected hydrazines provided the 1,3-regioisomer in yields up to 77%. To demonstrate the synthetic versatility of the triazole-based enone, reactions with other unsymmetrical dinucleophiles (hydroxylamine hydrochloride and S-methyl isothiourea sulfates) allowed the selective preparation of triazole-containing isoxazoline and pyrimidine rings.
Publications
Conditional gene expression and modulating protein stability under physiological conditions are important tools in biomedical research. They led to a thorough understanding of the roles of many proteins in living organisms. Current protocols allow for manipulating levels of DNA, mRNA, and of functional proteins. Modulating concentrations of proteins of interest, their post-translational processing, and their targeted depletion or accumulation are based on a variety of underlying molecular modes of action. Several available tools allow a direct as well as rapid and reversible variation right on the spot, i.e., on the level of the active form of a gene product. The methods and protocols discussed here include inducible and tissue-specific promoter systems as well as portable degrons derived from instable donor sequences. These are either constitutively active or dormant so that they can be triggered by exogenous or developmental cues. Many of the described techniques here directly influencing the protein stability are established in yeast, cell culture and in vitro systems only, whereas the indirectly working promoter-based tools are also commonly used in higher eukaryotes. Our major goal is to link current concepts of conditionally modulating a protein of interest’s activity and/or abundance and approaches for generating cell and tissue types on demand in living, multicellular organisms with special emphasis on plants.
Publications
The ipso-substitution of one (or two) hydroxy groups of phloroglucinol with arene nucleophiles (e.g., o-xylene, tetralin, biphenyl) can be achieved easily under Friedel–Crafts-type conditions with or without the use of organic solvents affording a variety of 3,5-dihydroxybiphenyls (57–89% yields). The new method has significant practical advantages compared to classical biaryl-coupling routes.
Publications
The substrate-controlled diastereoselective arylation of chiral aldehydes readily available from carbohydrates is described, using the boron–zinc exchange reaction to generate the transferable aryl groups. The methodology developed was applied to the total synthesis of the styryllactone (+)-7-epi-goniofufurone and analogues thereof.
Publications
Photoaffinity tags can be incorporated easily into peptoids and congeners by the Ugi and Passerini multicomponent reactions. Products related to photo-methionine and photo-leucine can be accomplished by diazirine-containing building blocks. The same protocols can be used to synthesize derivatives with benzophenone photo cross-linkers.
Publications
Glucosinolates (GLSs) present in Brassica vegetables serve as precursors for biologically active metabolites, which are released by myrosinase and induce phase 2 enzymes via the activation of Nrf2. Thus, GLSs are generally considered beneficial. The pattern of GLSs in plants is various, and contents of individual GLSs change with growth phase and culture conditions. Whereas some GLSs, for example, glucoraphanin (GRA), the precursor of sulforaphane (SFN), are intensively studied, functions of others such as the indole GLS neoglucobrassicin (nGBS) are rather unknown as are functions of combinations thereof. We therefore investigated myrosinase-treated GRA, nGBS and synthetic SFN for their ability to induce NAD(P)H:quinone oxidoreductase 1 (NQO1) as typical phase 2 enzyme, and glutathione peroxidase 2 (GPx2) as novel Nrf2 target in HepG2 cells. Breakdown products of nGBS potently inhibit both GRA-mediated stimulation of NQO1 enzyme and Gpx2 promoter activity. Inhibition of promoter activity depends on the presence of an intact xenobiotic responsive element (XRE) and is also observed with benzo[a]pyrene, a typical ligand of the aryl hydrocarbon receptor (AhR), suggesting that suppressive effects of nGBS are mediated via AhR/XRE pathway. Thus, the AhR/XRE pathway can negatively interfere with the Nrf2/ARE pathway which has consequences for dietary recommendations and, therefore, needs further investigation.
Publications
A set of selenoamino acids has been efficiently synthesized under smooth conditions by a simple, flexible and modular strategy. In this method, O-mesylated l-serine methyl ester is generated in situ and directly substituted with various selenolate anions to afford selenocysteine, selenolanthionine, and selenocystine derivatives in good yields. Also, a tellurocysteine derivative can be obtained by this method.
Publications
A simple, rapid, one-pot multicomponent synthesis of tryptophan-derived diketopiperazines with variable side chains is presented. Microwave radiation gives comparable yields, but allows a significant decrease in reaction times.
Publications
Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.