logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (17)
  • Year
    • 1999 (2)
      2000 (1)
      2002 (2)
      2003 (2)
      2006 (2)
      2007 (3)
      2008 (2)
      2010 (1)
      2014 (1)
      2024 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Wasternack, C. (7)
      Brandt, W. (4)
      Hause, B. (4)
      Demuth, H.-U. (3)
      Schilling, S. (3)
      Wessjohann, L. A. (3)
      Feussner, I. (2)
      Miersch, O. (2)
      Schneider, A. (2)
      Stenzel, I. (2)
      Abbas, M. (1)
      Ay, N. (1)
      Bachmann, A. (1)
      Barth, O. (1)
      Baumruk, V. (1)
      Brauer, M. N. (1)
      Brigelius-Flohé, R. (1)
      Clauß, K. (1)
      Delker, C. (1)
      Dissmeyer, N. (1)
      Eisenschmidt-Bönn, D. (1)
      Ettrich, R. (1)
      Faden, F. (1)
      Franken, P. (1)
      Garbe, E. (1)
      Gianinazzi-Pearson, V. (1)
      Glatt, H. (1)
      Haack, M. (1)
      Halim, V. A. (1)
      Hashemi Haeri, H. (1)
      Hertel, S. C. (1)
      Hinderberger, D. (1)
      Hofbauerová, K. (1)
      Hoffmann, T. (1)
      Humbeck, K. (1)
      Iori, R. (1)
      Kipp, A. (1)
      Klaus, D. (1)
      Kopecký, V. (1)
      Krajinski, F. (1)
      Lange, D. (1)
      Lichtenberger, O. (1)
      Lippmann, D. (1)
      Ludwig, H.-H. (1)
      Löwinger, M. (1)
      Manhart, S. (1)
      Maucher, H. (1)
      Mielke, S. (1)
      Monien, B. H. (1)
      Neumann, D. (1)
      Pagnotta, E. (1)
      Pavlícek, Z. (1)
      Rosahl, S. (1)
      Scheel, D. (1)
      Schneegans, N. (1)
      Schulz, K. (1)
      Schwieger, W. (1)
      Vess, A. (1)
      Vörös, K. (1)
      Weichert, H. (1)
      Wermann, M. (1)
      Wittstock, U. (1)
      von Bohlen, A. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Biol. Chem. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Plant Biol. Remove all filters
Displaying results 1 to 10 of 17.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2

Publications

Hashemi Haeri, H.; Schneegans, N.; Eisenschmidt-Bönn, D.; Brandt, W.; Wittstock, U.; Hinderberger, D.; Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopy Biol. Chem. 405 105-118 (2024) DOI: 10.1515/hsz-2023-0187
  • Abstract
  • Internet
  • BibText
  • RIS

Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.

Publications

Faden, F.; Mielke, S.; Lange, D.; Dissmeyer, N.; Generic tools for conditionally altering protein abundance and phenotypes on demand Biol. Chem. 395 737-762 (2014) DOI: 10.1515/hsz-2014-0160
  • Abstract
  • BibText
  • RIS

Conditional gene expression and modulating protein stability under physiological conditions are important tools in biomedical research. They led to a thorough understanding of the roles of many proteins in living organisms. Current protocols allow for manipulating levels of DNA, mRNA, and of functional proteins. Modulating concentrations of proteins of interest, their post-translational processing, and their targeted depletion or accumulation are based on a variety of underlying molecular modes of action. Several available tools allow a direct as well as rapid and reversible variation right on the spot, i.e., on the level of the active form of a gene product. The methods and protocols discussed here include inducible and tissue-specific promoter systems as well as portable degrons derived from instable donor sequences. These are either constitutively active or dormant so that they can be triggered by exogenous or developmental cues. Many of the described techniques here directly influencing the protein stability are established in yeast, cell culture and in vitro systems only, whereas the indirectly working promoter-based tools are also commonly used in higher eukaryotes. Our major goal is to link current concepts of conditionally modulating a protein of interest’s activity and/or abundance and approaches for generating cell and tissue types on demand in living, multicellular organisms with special emphasis on plants.

Publications

Haack, M.; Löwinger, M.; Lippmann, D.; Kipp, A.; Pagnotta, E.; Iori, R.; Monien, B. H.; Glatt, H.; Brauer, M. N.; Wessjohann, L. A.; Brigelius-Flohé, R.; Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products Biol. Chem. 391 1281-1293 (2010) DOI: 10.1515/bc.2010.134
  • Abstract
  • BibText
  • RIS

Glucosinolates (GLSs) present in Brassica vegetables serve as precursors for biologically active metabolites, which are released by myrosinase and induce phase 2 enzymes via the activation of Nrf2. Thus, GLSs are generally considered beneficial. The pattern of GLSs in plants is various, and contents of individual GLSs change with growth phase and culture conditions. Whereas some GLSs, for example, glucoraphanin (GRA), the precursor of sulforaphane (SFN), are intensively studied, functions of others such as the indole GLS neoglucobrassicin (nGBS) are rather unknown as are functions of combinations thereof. We therefore investigated myrosinase-treated GRA, nGBS and synthetic SFN for their ability to induce NAD(P)H:quinone oxidoreductase 1 (NQO1) as typical phase 2 enzyme, and glutathione peroxidase 2 (GPx2) as novel Nrf2 target in HepG2 cells. Breakdown products of nGBS potently inhibit both GRA-mediated stimulation of NQO1 enzyme and Gpx2 promoter activity. Inhibition of promoter activity depends on the presence of an intact xenobiotic responsive element (XRE) and is also observed with benzo[a]pyrene, a typical ligand of the aryl hydrocarbon receptor (AhR), suggesting that suppressive effects of nGBS are mediated via AhR/XRE pathway. Thus, the AhR/XRE pathway can negatively interfere with the Nrf2/ARE pathway which has consequences for dietary recommendations and, therefore, needs further investigation.

Publications

Ay, N.; Clauß, K.; Barth, O.; Humbeck, K.; Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves Plant Biol. 10 121-135 (2008) DOI: 10.1111/j.1438-8677.2008.00092.x
  • Abstract
  • BibText
  • RIS

Leaf senescence is the final developmental stage of a leaf. The progression of barley primary leaf senescence was followed by measuring the senescence‐specific decrease in chlorophyll content and photosystem II efficiency. In order to isolate novel factors involved in leaf senescence, a differential display approach with mRNA populations from young and senescing primary barley leaves was applied. In this approach, 90 senescence up‐regulated cDNAs were identified. Nine of these clones were, after sequence analyses, further characterized. The senescence‐associated expression was confirmed by Northern analyses or quantitative RealTime‐PCR. In addition, involvement of the phytohormones ethylene and abscisic acid in regulation of these nine novel senescence‐induced cDNA fragments was investigated. Two cDNA clones showed homologies to genes with a putative regulatory function. Two clones possessed high homologies to barley retroelements, and five clones may be involved in degradation or transport processes. One of these genes was further analysed. It encodes an ADP ribosylation factor 1‐like protein (HvARF1) and includes sequence motifs representing a myristoylation site and four typical and well conserved ARF‐like protein domains. The localization of the protein was investigated by confocal laser scanning microscopy of onion epidermal cells after particle bombardment with chimeric HvARF1‐GFP constructs. Possible physiological roles of these nine novel SAGs during barley leaf senescence are discussed.

Publications

Schilling, S.; Wasternack, C.; Demuth, H.-U.; Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution Biol. Chem. 389 (2008) DOI: 10.1515/BC.2008.111
  • Abstract
  • BibText
  • RIS

Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.

Publications

Schneider, A.; Brandt, W.; Wessjohann, L. A.; Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Sec peptides Biol. Chem. 388 1099-1101 (2007) DOI: 10.1515/BC.2007.114
  • Abstract
  • BibText
  • RIS

In selenocysteine (Sec, U)-containing proteins the selenenylsulfide bridge and its reduced thiol-selenol counterpart are usually the significant species. An important role for serine as flanking amino acid in the redox potential of S-S and S-Se bridges was proposed for some thioredoxin reductases. To check the generality of this proposal, model tetrapeptides (GCCG, SCCG, GCCS, SCCS, GCUG, SCUG, GCUS, SCUS) were synthesized, including the GCUG sequence of human thioredoxin reductase. The influence on the redox potential of S-Se and S-S bridges as a function of pH and of serine at different positions reveals (i) a strong general pH dependence, and (ii) a significant influence of flanking serine on disulfide only at basic pH.

Publications

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C.; Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions Biol. Chem. 388 145-153 (2007) DOI: 10.1515/BC.2007.016
  • Abstract
  • BibText
  • RIS

Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 105- to 106-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.

Publications

Wessjohann, L. A.; Schneider, A.; Abbas, M.; Brandt, W.; Selenium in chemistry and biochemistry in comparison to sulfur Biol. Chem. 388 997-1006 (2007) DOI: 10.1515/BC.2007.138
  • Abstract
  • BibText
  • RIS

What makes selenoenzymes – seen from a chemist's view – so special that they cannot be substituted by just more analogous or adapted sulfur proteins? This review compiles and compares physicochemical properties of selenium and sulfur, synthetic routes to selenocysteine (Sec) and its peptides, and comparative studies of relevant thiols and selenols and their (mixed) dichalcogens, required to understand the special role of selenium in selenoproteins on the atomic molecular level. The biochemically most relevant differences are the higher polarizability of Se- and the lower pKa of SeH. The latter has a strikingly different pH-dependence than thiols, with selenols being active at much lower pH. Finally, selected typical enzymatic mechanisms which involve selenocysteine are critically discussed, also in view of the authors' own results.

Publications

Halim, V. A.; Vess, A.; Scheel, D.; Rosahl, S.; The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence Plant Biol. 8 307-313 (2006) DOI: 10.1055/s-2006-924025
  • Abstract
  • BibText
  • RIS

Phytohormones are not only instrumental in regulating developmental processes in plants but also play important roles for the plant's responses to biotic and abiotic stresses. In particular, abscisic acid, ethylene, jasmonic acid, and salicylic acid have been shown to possess crucial functions in mediating or orchestrating stress responses in plants. Here, we review the role of salicylic acid and jasmonic acid in pathogen defence responses with special emphasis on their function in the solanaceous plant potato.

Publications

Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C.; Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products, Regulation Plant Biol. 8 297-306 (2006) DOI: 10.1055/s-2006-923935
  • Abstract
  • BibText
  • RIS

Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.

  • 1
  • 2

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail