- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Publications
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology