- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Preprints
Preprints
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Preprints
One class of enzymes that plant pathogens employ to manipulate innate immunity and physiology of the infected cells are host-targeted ADP-ribosyltransferases. The bacterial pathogen Pseudomonas syringae uses its type III secretion system to inject several effector proteins with ADP-ribosyltransferase activity into plant cells. One of them, AvrRpm1, ADP-ribosylates the plasma membrane-associated RPM1-INTERACTING PROTEIN 4 (RIN4) in Glycine max and Arabidopsis thaliana to attenuate targeted secretion of defense-promoting compounds. Substrate identification of host-targeted ADP-ribosyltransferases is complicated by the biochemical lability of the protein modification during plant protein extraction and in several cases required prior knowledge on plant immune signaling pathways that are impaired by the ADP-ribosylating type III effector. Using the AvrRpm1-RIN4 pair as a proof-of-concept, we present an untargeted proteomics workflow for enrichment and detection of ADP-ribosylated proteins and peptides from plant cell extracts that in several cases provides site-resolution for the modification.
Preprints
Proteome remodeling is a fundamental adaptive response and proteins in complex and functionally related proteins are often co-expressed. Using a deep sampling strategy we define Arabidopsis thaliana tissue core proteomes at around 10,000 proteins per tissue and absolutely quantify (copy numbers per cell) nearly 16,000 proteins throughout the plant lifecycle. A proteome wide survey of global post translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue and age specific roles of entire signaling modules regulating transcription in photosynthesis, seed development and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of Cysteine-rich Receptor-like Kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were co-expressed tissue and age specifically indicating functional promiscuity in the assembly of these little described protein complexes in Arabidopsis. Treatment of seedlings with flg22 for 16 hours allowed us to characterize proteome architecture in basal immunity in detail. The results were complemented with parallel reaction monitoring (PRM) targeted proteomics, phytohormone, amino acid and transcript measurements. We obtained strong evidence of suppression of jasmonate (JA) and JA-Ile levels by deconjugation and hydroxylation via IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2) under the control of JASMONATE INSENSITIVE 1 (MYC2). This previously unknown regulatory switch is another part of the puzzle of the as yet understudied role of JA in pattern triggered immunity. The extensive coverage of the Arabidopsis proteome in various biological scenarios presents a rich resource to plant biologists that we make available to the community.