- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Fungal elicitor stimulates a multicomponent defense response in cultured parsley cells (Petroselinum crispum). Early elements of this receptor-mediated response are ion fluxes across the plasma membrane and the production of reactive oxygen species (ROS), sequentially followed by defense gene activation and phytoalexin accumulation. Omission of Ca2+ from the culture medium or inhibition of elicitor-stimulated ion fluxes by ion channel blockers prevented the latter three reactions, all of which were triggered in the absence of elicitor by amphotericin B-induced ion fluxes. Inhibition of elicitor-stimulated ROS production using diphenylene iodonium blocked defense gene activation and phytoalexin accumulation. O2− but not H2O2 stimulated phytoalexin accumulation, without inducing proton fluxes. These results demonstrate a causal relationship between early and late reactions of parsley cells to the elicitor and indicate a sequence of signaling events from receptor-mediated activation of ion channels via ROS production and defense gene activation to phytoalexin synthesis. Within this sequence, O2− rather than H2O2 appears to trigger the subsequent reactions.