- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The effector protein NIP1 from the barley (Hordeum vulgare) pathogen Rhynchosporium secalis specifically induces the synthesis of defense-related proteins in cultivars of barley expressing the complementary resistance gene, Rrs1. In addition, it stimulates the activity of the barley plasma membrane H+-ATPase in a genotype-unspecific manner and it induces necrotic lesions in leaf tissues of barley and other cereal plant species. NIP1 variants type I and II, which display quantitative differences in their activities as elicitor and H+-ATPase stimulator, and the inactive mutant variants type III* and type IV*, were produced in Escherichia coli. Binding studies using 125I-NIP1 type I revealed a single class of binding sites with identical binding characteristics in microsomes from near-isogenic resistant (Rrs1) and susceptible (rrs1) barley. Binding was specific, reversible, and saturable, and saturation ligand-binding experiments yielded a Kd of 5.6 nm. A binding site was also found in rye (Secale cereale) and the nonhost species wheat (Triticum aestivum), oat (Avena sativa), and maize (Zea mays), but not in Arabidopsis (Arabidopsis thaliana). For NIP1 types I and II, equilibrium competition-binding experiments revealed a correlation between the difference in their affinities to the binding site and the differences in their elicitor activity and H+-ATPase stimulation, indicating a single target molecule to mediate both activities. In contrast, the inactive proteins type III* and type IV* are both characterized by high affinities similar to type I, suggesting that binding of NIP1 to this target is not sufficient for its activities.
Publications
Chain elongated, methionine (Met)-derived glucosinolates are a major class of secondary metabolites in Arabidopsis (Arabidopsis thaliana). The key enzymatic step in determining the length of the chain is the condensation of acetyl-coenzyme A with a series of ω-methylthio-2-oxoalkanoic acids, catalyzed by methylthioalkylmalate (MAM) synthases. The existence of two MAM synthases has been previously reported in the Arabidopsis ecotype Columbia: MAM1 and MAM3 (formerly known as MAM-L). Here, we describe the biochemical properties of the MAM3 enzyme, which is able to catalyze all six condensation reactions of Met chain elongation that occur in Arabidopsis. Underlining its broad substrate specificity, MAM3 also accepts a range of non-Met-derived 2-oxoacids, e.g. converting pyruvate to citramalate and 2-oxoisovalerate to isopropylmalate, a step in leucine biosynthesis. To investigate its role in vivo, we identified plant lines with mutations in MAM3 that resulted in a complete lack or greatly reduced levels of long-chain glucosinolates. This phenotype could be complemented by reintroduction of a MAM3 expression construct. Analysis of MAM3 mutants demonstrated that MAM3 catalyzes the formation of all glucosinolate chain lengths in vivo as well as in vitro, making this enzyme the major generator of glucosinolate chain length diversity in the plant. The localization of MAM3 in the chloroplast suggests that this organelle is the site of Met chain elongation.
Publications
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alc∷cwINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to β-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC∷ppa plants with defective phloem loading and tobacco pyk10∷InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.
Publications
Recently, the NADPH-dependent short-chain dehydrogenase/reductase (SDR) salutaridine reductase (E.C. 1.1.1.248) implicated in morphine biosynthesis was cloned from Papaver somniferum. In this report, a homology model of the Papaver bracteatum homolog was created based on the x-ray structure of human carbonyl reductase 1. The model shows the typical α/β-folding pattern of SDRs, including the four additional helices αF′-1 to αF′-4 assumed to prevent the dimerization of the monomeric short-chain dehyrogenases/reductases. Site-directed mutagenesis of asparagine-152, serine-180, tyrosine-236, and lysine-240 resulted in enzyme variants with strongly reduced performance or inactive enzymes, showing the involvement of these residues in the proton transfer system for the reduction of salutaridine. The strong preference for NADPH over NADH could be abolished by replacement of arginine residues 44 and 48 by glutamic acid, confirming the interaction between the arginines and the 2′-phosphate group. Docking of salutaridine into the active site revealed nine amino acids presumably responsible for the high substrate specificity of salutaridine reductase. Some of these residues are arranged in the right position by an additional αE′ helix, which is not present in SDRs analyzed so far. Enzyme kinetic data from mutagenic replacement emphasize the critical role of these residues in salutaridine binding and provide the first data on the molecular interaction of benzylisoquinoline alkaloids with enzymes.