- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Scientific workflows facilitate the automation of data analysis tasks by integrating various software and tools executed in a particular order. To enable transparency and reusability in workflows, it is essential to implement the FAIR principles. Here, we describe our experiences implementing the FAIR principles for metabolomics workflows using the Metabolome Annotation Workflow (MAW) as a case study. MAW is specified using the Common Workflow Language (CWL), allowing for the subsequent execution of the workflow on different workflow engines. MAW is registered using a CWL description on WorkflowHub. During the submission process on WorkflowHub, a CWL description is used for packaging MAW using the Workflow RO-Crate profile, which includes metadata in Bioschemas. Researchers can use this narrative discussion as a guideline to commence using FAIR practices for their bioinformatics or cheminformatics workflows while incorporating necessary amendments specific to their research area.
Publications
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Publications
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye – a model system for nearly a century – undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Publications
Methylerythritol cyclodiphosphate (MEcPP) is an intermediate in the biosynthesis of isoprenoids in plant plastids and in bacteria, and acts as a stress signal in plants. Here, we show that MEcPP regulates biofilm formation in Escherichia coli K-12 MG1655. Increased MEcPP levels, triggered by genetic manipulation or oxidative stress, inhibit biofilm development and production of fimbriae. Deletion of fimE, encoding a protein known to downregulate production of adhesive fimbriae, restores biofilm formation in cells with elevated MEcPP levels. Limited proteolysis-coupled mass spectrometry (LiP-MS) reveals that MEcPP interacts with the global regulatory protein H-NS, which is known to repress transcription of fimE. MEcPP prevents the binding of H-NS to the fimE promoter. Therefore, our results indicate that MEcPP can regulate biofilm formation by modulating H-NS activity and thus reducing fimbriae production. Further research is needed to test whether MEcPP plays similar regulatory roles in other bacteria.
Publications
Dalbergia melanoxylon Guill. & Perr (Fabaceae) is widely utilized in the traditional medicine of East Africa, showing effects against a variety of ailments including microbial infections. Phytochemical investigation of the root bark led to the isolation of six previously undescribed prenylated isoflavanones together with eight known secondary metabolites comprising isoflavanoids, neoflavones and an alkyl hydroxylcinnamate. Structures were elucidated based on HR-ESI-MS, 1- and 2-D NMR and ECD spectra. The crude extract and the isolated compounds of D. melanoxylon were tested for their antibacterial, antifungal, anthelmintic and cytotoxic properties, applying established model organisms non-pathogenic to humans. The crude extract exhibited significant antibacterial activity against Gram-positive Bacillus subtilis (97% inhibition at 50 μg/mL) and antifungal activity against the phytopathogens Phytophthora infestans, Botrytis cinerea and Septoria tritici (96, 89 and 73% at 125 μg/mL, respectively). Among the pure compounds tested, kenusanone H and (3R)-tomentosanol B exhibited, in a panel of partially human pathogenic bacteria and fungi, promising antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium showing MIC values between 0.8 and 6.2 μg/mL. The observed biological effects support the traditional use of D. melanoxylon and warrant detailed investigations of its prenylated isoflavanones as antibacterial lead compounds.
Publications
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.
Publications
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics experiments have become increasingly popular because of the wide range of metabolites that can be analyzed and the possibility to measure novel compounds. LC-MS instrumentation and analysis conditions can differ substantially among laboratories and experiments, thus resulting in non-standardized datasets demanding customized annotation workflows. We present an ecosystem of R packages, centered around the MetaboCoreUtils, MetaboAnnotation and CompoundDb packages that together provide a modular infrastructure for the annotation of untargeted metabolomics data. Initial annotation can be performed based on MS1 properties such as m/z and retention times, followed by an MS2-based annotation in which experimental fragment spectra are compared against a reference library. Such reference databases can be created and managed with the CompoundDb package. The ecosystem supports data from a variety of formats, including, but not limited to, MSP, MGF, mzML, mzXML, netCDF as well as MassBank text files and SQL databases. Through its highly customizable functionality, the presented infrastructure allows to build reproducible annotation workflows tailored for and adapted to most untargeted LC-MS-based datasets. All core functionality, which supports base R data types, is exported, also facilitating its re-use in other R packages. Finally, all packages are thoroughly unit-tested and documented and are available on GitHub and through Bioconductor.
Publications
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.
Publications
Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states.
Publications
The central aim in ecometabolomics and chemical ecology is to pinpoint chemical features that explain molecular functioning. The greatest challenge is the identification of compounds due to the lack of constitutive reference spectra, the large number of completely unknown compounds, and bioinformatic methods to analyze the big data. In this study we present an interdisciplinary methodological framework that extends ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) and the automated in silico classification of fragment peaks into compound classes. We synthesize findings from a prior study that explored the influence of seasonal variations on the chemodiversity of secondary metabolites in nine bryophyte species. Here we reuse and extend the representative dataset with DDA-MS data. Hierarchical clustering, heatmaps, dbRDA, and ANOVA with post-hoc Tukey HSD were used to determine relationships of the study factors species, seasons, and ecological characteristics. The tested bryophytes showed species-specific metabolic responses to seasonal variations (50% vs. 5% of explained variation). Marchantia polymorpha, Plagiomnium undulatum, and Polytrichum strictum were biochemically most diverse and unique. Flavonoids and sesquiterpenoids were upregulated in all bryophytes in the growing seasons. We identified ecological functioning of compound classes indicating light protection (flavonoids), biotic and pathogen interactions (sesquiterpenoids, flavonoids), low temperature and desiccation tolerance (glycosides, sesquiterpenoids, anthocyanins, lactones), and moss growth supporting anatomic structures (few methoxyphenols and cinnamic acids as part of proto-lignin constituents). The reusable bioinformatic framework of this study can differentiate species based on automated compound classification. Our study allows detailed insights into the ecological roles of biochemical constituents of bryophytes with regard to seasonal variations. We demonstrate that compound classification can be improved with adding constitutive reference spectra to existing spectral libraries. We also show that generalization on compound classes improves our understanding of molecular ecological functioning and can be used to generate new research hypotheses.