logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (17)
  • Year
    • 2000 (1)
      2004 (2)
      2009 (1)
      2011 (1)
      2012 (1)
      2015 (3)
      2016 (2)
      2017 (4)
      2019 (2)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Brandt, W. (4)
      Wessjohann, L. A. (4)
      Csuk, R. (3)
      Loesche, A. (3)
      Negm, A. (3)
      Shaaban, S. (3)
      Ashmawy, A. M. (2)
      Heller, L. (2)
      Hückelhoven, R. (2)
      Kogel, K.-H. (2)
      Lee, J. (2)
      Scheel, D. (2)
      Trujillo, M. (2)
      Ahmed, D. M. (1)
      Alonso del Rivero, M. (1)
      Avrova, A. (1)
      BANI HASHEMIAN, S. M. (1)
      BERGER, S. (1)
      Bobach, C. (1)
      DURAN-VILA, N. (1)
      De Armas, G. (1)
      Denkert, A. (1)
      Engelhardt, S. (1)
      Feussner, I. (1)
      Gago, S. (1)
      González-Bacerio, J. (1)
      Grabandt, P. (1)
      Haapalainen, M. (1)
      Hause, B. (1)
      Izquierdo, M. (1)
      Janik, K. (1)
      Kahnt, M. (1)
      Kaluđerović, G. N. (1)
      Kangasjärvi, J. (1)
      Karasch, J. (1)
      Knogge, W. (1)
      Küfner, I. (1)
      LOEFFLER, C. (1)
      Li, C.-M. (1)
      Mithöfer, A. (1)
      Méndez, Y. (1)
      NICKSTADT, A. (1)
      NIKS, R. E. (1)
      Nürnberger, T. (1)
      PENSABENE-BELLAVIA, G. (1)
      Palberg, K. (1)
      Pantelić, N. (1)
      Pérez, I. (1)
      Raffeiner, M. (1)
      Ranf, S. (1)
      Rivera, D. G. (1)
      Rojas, T. (1)
      Romantschuk, M. (1)
      Sabo, T. J. (1)
      Schlink, K. (1)
      Schwarz, S. (1)
      Scott, W. L. (1)
      Seliger, B. (1)
      Serra, P. (1)
      Simon, V. (1)
      Sobh, M. A. (1)
      Sommerwerk, S. (1)
      Soto, C. (1)
      Stanojković, T. P. (1)
      Stellmach, H. (1)
      THOMMA, B. P. H. J. (1)
      TROEGER, M. (1)
      Taira, S. (1)
      Tennstedt, S. (1)
      Valdés-Tresanco, M. E. (1)
      Valiente, P. A. (1)
      Vasco, A. V. (1)
      Westermann, B. (1)
      Wiemann, J. (1)
      Wiese, J. (1)
      ZEIER, J. (1)
      Zmejkovski, B. B. (1)
      de León, L. (1)
      de Meijere, A. (1)
      Álvarez-Ginarte, Y. M. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Eur. J. Med. Chem. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Mol. Plant Pathol. Remove all filters
Displaying results 1 to 10 of 17.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2

Publications

Méndez, Y.; De Armas, G.; Pérez, I.; Rojas, T.; Valdés-Tresanco, M. E.; Izquierdo, M.; Alonso del Rivero, M.; Álvarez-Ginarte, Y. M.; Valiente, P. A.; Soto, C.; de León, L.; Vasco, A. V.; Scott, W. L.; Westermann, B.; González-Bacerio, J.; Rivera, D. G.; Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics Eur. J. Med. Chem. 163 481-499 (2019) DOI: 10.1016/j.ejmech.2018.11.074
  • Abstract
  • BibText
  • RIS

The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening. By dose-response studies, three compounds were identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited for the porcine ortholog aminopeptidase. The study allowed for the identification of the key structural features required for a high ePepN inhibitory activity. The most potent and selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We predicted that both diastereomers of compound TPM 11 bind to a site distinct from that occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative inhibition mechanism that doesn't involve Zn coordination. On the other hand, the activity landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three identified inhibitors is a potent haemolytic agent, and only two compounds showed moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results point to promising compounds for the future development of rationally designed TPMs as antibacterial agents.

Publications

Shaaban, S.; Ashmawy, A. M.; Negm, A.; Wessjohann, L. A.; Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma Eur. J. Med. Chem. 179 515-526 (2019) DOI: 10.1016/j.ejmech.2019.06.075
  • Abstract
  • BibText
  • RIS

Nineteen organoselenides were synthesized and tested for their intrinsic cytotoxicity in hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7) cell lines and their corresponding selective cytotoxicity (SI) was estimated using normal lung fibroblast (WI-38) cells. Most of the organic selenides exhibited good anticancer activity, and this was more pronounced in HepG2 cells. Interestingly, the naphthoquinone- (5), thiazol- (12), and the azo-based (13) organic selenides demonstrated promising SI (up to 76). Furthermore, the amine 4c, naphthoquinone 5, and azo-based 13 and 15 organic selenides were able to down-regulate the expression of Bcl-2 and up-regulate the expression levels of IL-2, IL-6 and CD40 in HepG2 cells compared to untreated cells. Moreover, most of the synthesized candidates manifested good free radical-scavenging and GPx-like activities comparable to vitamin C and ebselen. The obtained results suggested that some of the presented organoselenium candidates have promising anti-HepG2 and antioxidant activities.

Publications

Wiemann, J.; Karasch, J.; Loesche, A.; Heller, L.; Brandt, W.; Csuk, R.; Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase Eur. J. Med. Chem. 139 222-231 (2017) DOI: 10.1016/j.ejmech.2017.07.081
  • Abstract
  • BibText
  • RIS

Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.

Publications

Heller, L.; Kahnt, M.; Loesche, A.; Grabandt, P.; Schwarz, S.; Brandt, W.; Csuk, R.; Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase Eur. J. Med. Chem. 126 652-668 (2017) DOI: 10.1016/j.ejmech.2016.11.056
  • Abstract
  • BibText
  • RIS

A set of thirtyfive 30-norlupan derivatives (2–36) was prepared from the natural triterpenoid platanic acid (PA), and the hydroxyl group at C-3, the carboxyl group at C-17 and the carbonyl group at C-20 were modified. These derivatives were tested for their inhibitory activity for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) using Ellman's assay. Extra enzyme kinetic studies were performed. The most active compound was (3β, 20R)-3-acetyloxy-20-amino-30-norlupan-28-oate (32) showing a Ki value of 0.01 ± 0.003 μM for BChE. This compound proved to be a selective (FB = 851), mixed-type inhibitor for BChE.

Publications

Loesche, A.; Wiese, J.; Sommerwerk, S.; Simon, V.; Brandt, W.; Csuk, R.; Repurposing N,N'-bis-(arylamidino)-1,4-piperazinedicarboxamidines: An unexpected class of potent inhibitors of cholinesterases Eur. J. Med. Chem. 125 430-434 (2017) DOI: 10.1016/j.ejmech.2016.09.051
  • Abstract
  • BibText
  • RIS

Drug repurposing (=drug repositioning) is an effective way to cut costs for the development of new therapeutics and to reduce the time-to-market time-span. Following this concept a small library of compounds was screened for their ability to act as inhibitors of acetyl- and butyrylcholinesterase. Picloxydine, an established antiseptic, was shown to be an inhibitor for both enzymes. Systematic variation of the aryl substituents led to analogs possessing almost the same good properties as gold standard galantamine hydrobromide.

Publications

Janik, K.; Mithöfer, A.; Raffeiner, M.; Stellmach, H.; Hause, B.; Schlink, K.; An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma? Mol. Plant Pathol. 18 435-442 (2017) DOI: 10.1111/mpp.12409
  • Abstract
  • BibText
  • RIS

The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple‐growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11‐like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11‐like proteins seem to be key players in phytoplasmal infection.

Publications

Shaaban, S.; Negm, A.; Ashmawy, A. M.; Ahmed, D. M.; Wessjohann, L. A.; Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma Eur. J. Med. Chem. 122 55-71 (2016) DOI: 10.1016/j.ejmech.2016.06.005
  • Abstract
  • BibText
  • RIS

Novel tetrazole-based diselenides and selenoquinones were synthesized via azido-Ugi and sequential nucleophilic substitution (SN) strategy. Molecular docking study into mammalian TrxR1 was used to predict the anticancer potential of the newly synthesized compounds. The cytotoxic activity of the compounds was evaluated using hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7) cancer cells and compared with their cytotoxicity in normal fibroblast (WI-38) cells. The corresponding redox properties of the synthesized compounds were assessed employing 2,2-diphenyl-1-picrylhydrazyl (DPPH), glutathione peroxidase (GPx)-like activity and bleomycin dependent DNA damage. In general, diselenides showed preferential cytotoxicity to HepG2 compared to MCF-7 cells. These compounds exhibited also good GPx catalytic activity compared to ebselen (up to 5 fold). Selenoquinones 18, 21, 22 and 23 were selected to monitor the expression levels of caspase-8, Bcl-2 and Ki-67 molecular biomarkers. Interestingly, these compounds downregulated the Bcl-2 and Ki-67 expression levels and activated the expression of caspase-8 in HepG2 cells compared to untreated cells. These results indicate that some of the newly synthesized compounds possess anti-HepG2 activity.

Publications

Ranf, S.; Scheel, D.; Lee, J.; Challenges in the identification of microbe-associated molecular patterns in plant and animal innate immunity: a case study with bacterial lipopolysaccharide Mol. Plant Pathol. 17 1165-1169 (2016) DOI: 10.1111/mpp.12452
  • Abstract
  • BibText
  • RIS

Immunity against pathogen infection depends on a host's ability to sense invading pathogens and to rapidly trigger defence reactions that block pathogen proliferation. Both plants and animals detect conserved structural motifs of microbe‐specific compounds, so‐called microbe‐associated molecular patterns (MAMPs), through germline‐encoded immune sensors, which are accordingly termed pattern recognition receptors (PRRs) (Akira et al., 2006; Boller and Felix, 2009). Activated PRRs initiate signal transduction and trigger innate immune responses. MAMPs are generally derived from elements essential for microbial fitness and are conserved across species, thus enabling the host to detect a range of potential pathogens. In mammals, innate immune sensing of MAMPs is not only crucial for basal immune responses but is also tightly connected with and required for a subsequent adaptive, antibody‐mediated immunity (Akira et al., 2006; Janeway and Medzhitov, 2002). Plants, lacking an adaptive immune system, have apparently evolved a greater capacity to detect a broader repertoire of MAMPs. Different plant species possess distinct sets of highly specific PRRs, but the downstream signalling pathways are rather conserved and converge on common signalling steps. This allows the transfer of PRRs, even to different plant families, whilst maintaining their functionality and specificity (Zipfel, 2014). This also enables researchers to use well‐studied, genetically amenable model systems for the identification of MAMPs and their respective PRRs. Several examples of interfamily PRR transfer have demonstrated that the introduction of novel PRRs into plant species can confer relevant levels of resistance to otherwise susceptible plants (e.g. Afroz et al., 2011; Hao et al., 2015; Lacombe et al., 2010; Mendes et al., 2010; Schoonbeek et al., 2015; Tripathi et al., 2014). Hence, MAMP sensing by PRRs has great potential for the engineering of disease resistance in crop plants. In recent years, it has therefore become a major task to identify and isolate MAMPs from a range of microorganisms, and their respective PRRs, to study their role in innate immunity and their application potential.

Publications

Bobach, C.; Tennstedt, S.; Palberg, K.; Denkert, A.; Brandt, W.; de Meijere, A.; Seliger, B.; Wessjohann, L. A.; Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens Eur. J. Med. Chem. 90 267-279 (2015) DOI: 10.1016/j.ejmech.2014.11.026
  • Abstract
  • BibText
  • RIS

The androgen receptor is an important pharmaceutical target for a variety of diseases. This paper presents an in silico/in vitro screening procedure to identify new androgen receptor ligands. The two-step virtual screening procedure uses a three-dimensional pharmacophore model and a docking/scoring routine. About 39,000 filtered compounds were docked with PLANTS and scored by Chemplp. Subsequent to virtual screening, 94 compounds, including 28 steroidal and 66 nonsteroidal compounds, were tested by an androgen receptor fluorescence polarization ligand displacement assay. As a result, 30 compounds were identified that show a relative binding affinity of more than 50% in comparison to 100 nM dihydrotestosterone and were classified as androgen receptor binders. For 11 androgen receptor binders of interest IC50 and Ki values were determined. The compound with the highest affinity exhibits a Ki value of 10.8 nM. Subsequent testing of the 11 compounds in a PC-3 and LNCaP multi readout proliferation assay provides insights into the potential mode of action. Further steroid receptor ligand displacement assays and docking studies on estrogen receptors α and β, glucocorticoid receptor, and progesterone receptor gave information about the specificity of the 11 most active compounds.

Publications

Pantelić, N.; Stanojković, T. P.; Zmejkovski, B. B.; Sabo, T. J.; Kaluđerović, G. N.; In vitro anticancer activity of gold(III) complexes with some esters of (S,S)-ethylenediamine-N,N′-di-2-propanoic acid Eur. J. Med. Chem. 90 766-774 (2015) DOI: 10.1016/j.ejmech.2014.12.019
  • Abstract
  • BibText
  • RIS

Five novel gold(III) complexes of general formulas [AuCl2{(S,S)-R2eddip}]PF6, ((S,S)-eddip = (S,S)-ethylenediamine-N,N′-di-2-propanoate, R = n-Bu, n-Pe, i-Bu, i-Am, cPe; 1–5, respectively) were synthesized and characterized by UV/Vis, IR and NMR spectroscopy and mass spectrometry. DFT calculations indicated that (R,R)-N,N′-configuration diastereoisomers were the most stable for 1–5. 3 is stable in DMSO for at least 24 h, but immediate hydrolysis in PBS occurs. 3 is readily reduced with ascorbic acid and forms adducts with bovine serum albumin (BSA). In vitro anticancer activity of the gold(III) complexes against human cervix adenocarcinoma HeLa, human myelogenous leukemia K562, human melanoma Fem-x tumor cell lines, as well as against non-cancerous human embryonic lung fibroblast cell line MRC-5 was determined using MTT assay. Complex 4 showed highest activity and selectivity (IC50(Fem-x) = 1.3 ± 0.2; IC50(MRC-5)/IC50(Fem-x) = 72.5 ± 12.4), 4 times more active and 28 times more selective than cisplatin. Complexes induced apoptotic mode of death in a time-dependent manner in HeLa cells.

  • 1
  • 2

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail