- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.
Publications
Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.
Publications
The cullin‐RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN. Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin‐conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN. The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF. Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1. We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.
Publications
Pflanzen müssen gegen vielfältige biotische und abiotische Umwelteinflusse eine Abwehr aufbauen. Aber gleichzeitig müssen sie wachsen und sich vermehren. Jasmonate sind neben anderen Hormonen ein zentrales Signal bei der Etablierung von Abwehrmechanismen, aber auch Signal von Entwicklungsprozessen wie Blüten‐ und Trichombildung, sowie der Hemmung von Wachstum. Biosynthese und essentielle Komponenten der Signaltransduktion von JA und seinem biologisch aktiven Konjugat JA‐Ile sind gut untersucht. Der Rezeptor ist ein Proteinkomplex, der “JA‐Ile‐Wahrnehmung” mit proteasomalem Abbau von Repressorproteinen verbindet. Dadurch können positiv agierende Transkriptionsfaktoren wirksam werden und vielfältige Genexpressionsänderungen auslösen. Dies betrifft die Bildung von Abwehrproteinen, Enzymen der JA‐Biosynthese und Sekundärstoffbildung, und Proteinen von Signalketten und Entwicklungsprozessen. Die Kenntnisse zur JA‐Ile‐Wirkung werden in Landwirtschaft und Biotechnologie genutzt.
Publications
Apocarotinoide werden durch hochspezifische Spaltungsreaktionen oxidativer Enzyme an den Doppelbindungen von Carotinoiden maßgeschneidert. Es können neue Chromophore entstehen, die zusätzliche Nuancen des gelb‐roten Farbspektrums eröffnen. Farblose C13‐Apocarotinoide können potente Duft‐ und Aromastoffe sein. Viele Apocarotinoidfunktionen mit Hormoncharakter sind lange bekannt (Abszisinsäure in Pflanzen, Trisporsäure in Pilzen, Retinsäure in Säugern). Eine neue Klasse von Apocarotinoid‐Pflanzenhormonen, die die Sprossverzweigung der Pflanzen mitbestimmen, wurde kürzlich als Strigolactone identifiziert. In ihrer Biosynthese wie auch in der von mykorrhizainduzierten C13/C14‐Apocarotinoiden treten mehrstufige aufeinanderfolgende Carotinoidspaltungsreaktionen auf. Das Wissen über Synthesewege und Funktionen von Apocarotinoiden eröffnet neue Perspektiven für Anwendungen im Zierpflanzenbau, bei der Bekämpfung parasitischer Unkräuter und in der Beeinflussung von Blütendüften und Fruchtaromen.
Publications
Die Lebensgemeinschaft mit Mykorrhizapilzen stellt Pflanzen mineralische Nährstoffe und Wasser zur Verfügung und gilt daher als evolutionäre Grundlage für die Entwicklung der Landpflanzen. Die heute weit verbreitete arbuskuläre Mykorrhiza (AM) ist insbesondere unter widrigen Bedingungen (Nährstoffmangel, Trocken‐, Salz‐ oder Schwermetallstress sowie Pathogenbefall) für die Pflanze von Nutzen. Der pilzliche AM‐Partner, der obligat auf die Interaktion angewiesen ist, wird im Gegenzug mit Kohlenhydraten versorgt. Der Artikel beschreibt den aktuellen Stand der Forschung bezüglich der Etablierung und Regulation der AM durch die Pflanze. Es werden die frühen Erkennungssignale und die nachfolgende Wegbereitung der Pflanze für den eindringenden Pilz, die Kohlenhydratversorgung des AM‐Pilzes, wie auch die Limitierung der pilzlichen Infektionen mittels Autoregulation und die Rolle der Phytohormone für eine funktionelle und ausgeglichene Symbiose behandelt.
Publications
Natural hammerhead ribozymes are mostly found in some viroid and viroid‐like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis‐acting hammerheads self‐cleave much faster than trans‐acting derivatives and other reported artificial hammerheads. Moreover, modifications of the peripheral loops 1 and 2 of one of these natural hammerheads induced a >100‐fold reduction of the self‐cleavage constant, whereas engineering a trans‐acting artificial hammerhead into a cis derivative by introducing a loop 1 had no effect. These data show that regions external to the central conserved core of natural hammerheads play a role in catalysis, and suggest the existence of tertiary interactions between these peripheral regions. The interactions, determined by the sequence and size of loops 1 and 2 and most likely of helices I and II, must result from natural selection and should be studied in order to better understand the hammerhead requirements in vivo.
Publications
Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen‐associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep‐13, constitutes a surface‐exposed fragment within a novel calcium‐dependent cell wall transglutaminase (TGase) from Phytophthora sojae . TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep‐13 identified the same amino acids indispensable for both TGase and defense‐eliciting activity. Pep‐13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus‐specific recognition determinant for the activation of plant defense in host and non‐host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
Publications
Pflanzen und bestimmte Pilze haben im Laufe ihrer Entwicklungsgeschichte „gelernt”︁, in einer engen Assoziation im Boden, der Mykorrhiza, eine äußerst erfolgreiche Symbiose miteinander einzugehen. Arbuskuläre Mykorrhizapilze helfen Pflanzen sich auf nährstoffarmen Böden ausreichend mit Wasser, Nährsalzen und Spurenelementen zu versorgen und fördern entscheidend Diversität und Produktivität von Pflanzengesellschaften. Darüber hinaus zeigen mykorrhizierte Pflanzen eine erhöhte Widerstandsfähigkeit gegen Pathogenbefall. Im Gegenzug „bezahlt”︁ die Pflanze den Pilz für diesen Gewinn mit Kohlenhydraten in Form einfacher Zucker (Glucose, Fructose). Durch manche Erfolge in der Erforschung der Mykorrhiza auf Metaboliten‐ und Genebene beginnen wir allmählich zu erahnen, wie komplex die molekularen Interaktionen dieser Symbiose sind. Es ist zu erwarten, dass das steigende Interesse an der Mykorrhizaforschung zu neuen Einsichten in die Strategien von Pflanzen und Pilzen in der Entwicklung mutualistisch‐symbiontischer Assoziationen führen wird.
Publications
Chemische Signale wurden bereits im 19.Jahrhundert als Regulatoren von Wachstum und Entwicklung der Pflanzen postuliert.In den letzten 70 Jahren wurde die Wirkungsweise der klassischen Pflanzenhormone wie der Auxine, Gibberelline, Cytokinine, Ethylen und Abscisinsäure aufgeklärt. Doch erst im letzten Jahrzehnt entdeckte man die Bedeutung der Brassinosteroide, der Peptidhormone und der Jasmonate.