- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an ‘ancestral’ effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Publications
CP (cisplatin) and mesoporous silica SBA-15 (Santa Barbara amorphous 15) loaded with CP (→SBA-15|CP) were tested in vitro and in vivo against low metastatic mouse melanoma B16F1 cell line. SBA-15 only, as drug carrier, is found to be not active, while CP and SBA-15|CP revealed high cytotoxicity in lower μM range. The activity of SBA-15|CP was found similar to the activity of CP alone. Both CP and SBA-15|CP induced inhibition of cell proliferation (carboxyfluorescein succinimidyl ester - CFSE assay) along with G2/M arrest (4′,6-diamidino-2-phenylindole - DAPI assay). Apoptosis (Annexin V/ propidium iodide - PI assay), through caspase activation (apostat assay) and nitric oxide (NO) production (diacetate(4-amino-5-methylamino-2′,7′-difluorofluorescein-diacetat) - DAF FM assay), was identified as main mode of cell death. However, slight elevated autophagy (acridine orange - AO assay) was detected in treated B16F1 cells. CP and SBA-15|CP did not affect production of ROS (reactive oxygen species) in B16F1 cells. Both SBA-15|CP and CP induced in B16F1 G2 arrest and subsequent senescence. SBA-15|CP, but not CP, blocked the growth of melanoma in C57BL/6 mice. Moreover, hepato- and nephrotoxicity in SBA-15|CP treated animals were diminished in comparison to CP confirming multiply improved antitumor potential of immobilized CP. Outstandingly, SBA-15 boosted in vivo activity and diminished side effects of CP.
Publications
Two novel Co(II) fenamato complexes containing bathocuproine (bcp), namely [Co(bcp)(flu)2] (1) and [Co(bcp)(nif)2] (2) (flu = flufenamato, nif = niflumato) were synthesized and characterized by elemental analysis, single-crystal X-ray structure analysis as well as absorption and fluorescence spectroscopy. Investigation of their molecular structure revealed that both complexes are isostructural and form analogous complex molecules, with a Co(II) atom hexacoordinated by two nitrogen atoms of bcp and four oxygen atoms of two chelate bonded flu (1) and nif (2) ligands in a distorted octahedral arrangement. Surprisingly, the results of cytotoxicity experiments on four cancer cell lines (HeLa, HT-29, PC-3 and MCF-7) have revealed that despite similar structure of the complexes, the nif complex exhibits significantly higher activity, being the most effective against the PC-3 cell line (IC50 (MTT) = 6.11 ± 1.95 μM). Further studies performed on PC-3 cell line have shown that the mechanism of the cytotoxic action of nif complex (2) might involve activation of autophagic processes and apoptosis, while for its flu analogue (1) apoptosis was detected.
Publications
Two novel triphenyltin(IV) compounds, [Ph3SnL1] (L1 = 2-(5-(4-fluorobenzylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (1)) and [Ph3SnL2] (L2 = 2-(5-(5-methyl-2-furfurylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (2)) were synthesized and characterized by FT-IR, (1H and 13C) NMR spectroscopy, mass spectrometry, and elemental microanalysis. The in vitro anticancer activity of the synthesized organotin(IV) compounds was determined against four tumor cell lines: PC-3 (prostate), HT-29 (colon), MCF-7 (breast), and HepG2 (hepatic) using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. The IC50 values are found to be in the range from 0.11 to 0.50 μM. Compound 1 exhibits the highest activity toward PC-3 cells (IC50 = 0.115 ± 0.009 μM; CV assay). The tin and platinum uptake in PC-3 cells showed a threefold lower uptake of tin in comparison to platinum (as cisplatin). Together with its higher activity this indicates a much higher cell inhibition potential of the tin compounds (calculated to ca. 50 to 100 times). Morphological analysis suggested that the compounds induce apoptosis in PC-3 cells, and flow cytometry analysis revealed that 1 and 2 induce autophagy as well as NO (nitric oxide) production.
Publications
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
Publications
SBA-15 (Santa Barbara Amorphous 15) mesoporous silica and its functionalized form (with 3-mercaptopropyltriethoxysilane) SBA-15~SH were used as carriers for [Ru(η6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] complex, denoted as [Ru]. Prepared mesoporous silica nanomaterials were characterized by traditional methods. Materials without [Ru] complex did not show any cytotoxic activity against melanoma B16 and B16-F10 cell lines. On the contrary, materials containing [Ru] such as SBA-15|[Ru] and SBA-15~SH|[Ru], exhibited very high activity against tested tumor cell lines, moreover with similar inhibitory potential. According to the loaded amount of the [Ru] in SBA-15|[Ru] and SBA-15~SH|[Ru] the IC50 values are 1–2μM depending on the test used, thus in comparison to [Ru] alone the activity of nanomaterials containing [Ru] are elevated 3–6 times in vitro. However, the mechanism of apoptosis induction differs for these two mesoporous silica. Unlike reference [Ru] compound and SBA-15~SH|[Ru], SBA-15|[Ru] induces high caspase activation. Discrepancy in mechanism of drugs action at intracellular level points towards an influence of functionalization as well as availability of the drug. Moreover, both SBA-15|[Ru] and SBA-15~SH|[Ru] similarly to [Ru] are declining autophagy in B16 cell line.
Publications
Four novel gold(III) complexes of general formulae [AuCl2{(S,S)-R2eddl}]PF6 (R2eddl = O,O′-dialkyl-(S,S)-ethylenediamine-N,N′-di-2-(4-methyl)pentanoate, R = n-Pr, n-Bu, n-Pe, i-Bu; 1–4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N′-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24 h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC50: 5.04–6.51 μM). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner.
Publications
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.
Publications
[Ru(η6-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym = cymene; dpa = 2,2′-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η6-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4+ Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 1 might contribute to the overall therapeutic properties of the complex.
Publications
The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.