- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Introduction Liverworts are a group of non-vascular plants that possess unique metabolism not found in other plants. Many liverwort metabolites have interesting structural and biochemical characteristics, however the fluctuations of these metabolites in response to stressors is largely unknown. Objectives To investigate the metabolic stress-response of the leafy liverwort Radula complanata. Methods Five phytohormones were applied exogenously to in vitro cultured R. complanata and an untargeted metabolomic analysis was conducted. Compound classification and identification was performed with CANOPUS and SIRIUS while statistical analyses including PCA, ANOVA, and variable selection using BORUTA were conducted to identify metabolic shifts.Results It was found that R. complanata was predominantly composed of carboxylic acids and derivatives, followed by benzene and substituted derivatives, fatty acyls, organooxygen compounds, prenol lipids, and flavonoids. The PCA revealed that samples grouped based on the type of hormone applied, and the variable selection using BORUTA (Random Forest) revealed 71 identified and/or classified features that fluctuated with phytohormone application. The stress-response treatments largely reduced the production of the selected primary metabolites while the growth treatments resulted in increased production of these compounds. 4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a biomarker for the growth treatments while GDP-hexose was identified as a biomarker for the stress-response treatments. Conclusion Exogenous phytohormone application caused clear metabolic shifts in Radula complanata that deviate from the responses of vascular plants. Further identification of the selected metabolite features can reveal metabolic biomarkers unique to liverworts and provide more insight into liverwort stress responses.
Publications
The continued high rates of using antibiotics in healthcare and livestock, without sufficient new compounds reaching the market, has led to a dramatic increase in antimicrobial resistance, with multidrug-resistant bacteria emerging as a major public health threat worldwide. Because the vast majority of antiinfectives are natural products or have originated from them, we assessed the predictive power of plant molecular phylogenies and species distribution modeling in the search for clades and areas which promise to provide a higher probability of delivering new antiinfective compound leads. Our approach enables taxonomically and spatially targeted bioprospecting and supports the battle against the global antimicrobial crisis.
Publications
0
Publications
IntroductionThe demand to develop efficient and reliable analytical methods for the quality control of nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of its active principles.ObjectiveTo establish a reliable model for the quality control of widely used Senna preparations used as laxatives and assess its phyto-equivalency.MethodsA comparative metabolomics approach via NMR and MS analyses was employed for the comprehensive measurement of metabolites and analyzed using chemometrics.ResultsUnder optimized conditions, 30 metabolites were simultaneously identified and quantified including anthraquinones, bianthrones, acetophenones, flavonoid conjugates, naphthalenes, phenolics, and fatty acids. Principal component analysis (PCA) was used to define relative metabolite differences among Senna preparations. Furthermore, quantitative 1H NMR (qHNMR) was employed to assess absolute metabolites levels in preparations. Results revealed that 6-hydroxy musizin or tinnevellin were correlated with active metabolites levels, suggesting the use of either of these naphthalene glycosides as markers for official Senna drugs authentication.ConclusionThis study provides the first comparative metabolomics approach utilizing NMR and UPLC–MS to reveal for secondary metabolite compositional differences in Senna preparations that could readily be applied as a reliable quality control model for its analysis.
Publications
In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.
Publications
Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis. Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.
Publications
Heteromannan (HM) is one of the most ancient cell wall polymers in the plant kingdom, consisting of β-(1–4)-linked backbones of glucose (Glc) and mannose (Man) units. Despite the widespread distribution of HM polysaccharides, their biosynthesis remains mechanistically unclear. HM is elongated by glycosyltransferases (GTs) from the cellulose synthase-like A (CSLA) family. MANNAN-SYNTHESIS RELATED (MSR) putative GTs have also been implicated in (gluco)mannan synthesis, but their roles have been difficult to decipher in planta and in vitro. To further characterize the products of the HM synthases and accessory proteins, we chose a synthetic biology approach to synthesize plant HM in yeast. The expression of a CSLA protein in Pichia pastoris led to the abundant production of plant HM: up to 30% of glycans in the yeast cell wall. Based on sequential chemical and enzymatic extractions, followed by detailed structural analyses, the newly produced HM polymers were unbranched and could be larger than 270 kDa. Using CSLAs from different species, we programmed yeast cells to produce an HM backbone composed exclusively of Man or also incorporating Glc. We demonstrate that specific MSR cofactors were indispensable for mannan synthase activity of a coffee CSLA or modulated a functional CSLA enzyme to produce glucomannan instead of mannan. Therefore, this powerful platform yields functional insight into the molecular machinery required for HM biosynthesis in plants.
Publications
IntroductionThe production of marine drugs in its normal habitats is often low and depends greatly on ecological conditions. Chemical synthesis of marine drugs is not economically feasible owing to their complex structures. Biotechnology application via elicitation represents a promising tool to enhance metabolites yield that has yet to be explored in soft corals.ObjectivesStudy the elicitation impact of salicylic acid (SA) and six analogues in addition to a systemic acquired resistance inducer on secondary metabolites accumulation in the soft coral Sarcophyton ehrenbergi along with the symbiont zooxanthellae and if SA elicitation effect is extended to other coral species S. glaucum and Lobophyton pauciliforum.MethodsPost elicitation in the three corals and zooxanthella, metabolites were extracted and analyzed via UHPLC-MS coupled with chemometric tools.ResultsMultivariate data analysis of the UHPLC-MS data set revealed clear segregation of SA, amino-SA, and acetyl-SA elicited samples. An increased level ca. 6- and 8-fold of the diterpenes viz., sarcophytonolide I, sarcophine and a C28-sterol, was observed in SA and amino-SA groups, respectively. Post elicitation, the level of diepoxy-cembratriene increased 1.5-fold and 2.4-fold in 1 mM SA, and acetyl-SA (aspirin) treatment groups, respectively. S. glaucum and Lobophyton pauciliforum showed a 2-fold increase of diepoxy-cembratriene levels.ConclusionThese results suggest that SA could function as a general and somewhat selective diterpene inducing signaling molecule in soft corals. Structural consideration reveals initial structure–activity relationship (SAR) in SA derivatives that seem important for efficient diterpene and sterol elicitation.
Publications
Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little “arm twisting” in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption.
Publications
The plant hormone auxin activates primary response genes by facilitating proteolytic removal of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)-inducible repressors, which directly bind to transcriptional AUXIN RESPONSE FACTORS (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼6.4 μM) were determined by isothermal titration calorimetry. In silico protein–protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein–protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.