logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (56)
  • Year
    • 1999 (2)
      2003 (2)
      2006 (3)
      2007 (2)
      2008 (2)
      2009 (3)
      2010 (2)
      2011 (2)
      2012 (2)
      2014 (6)
      2015 (2)
      2017 (2)
      2018 (6)
      2019 (5)
      2020 (4)
      2021 (4)
      2022 (5)
      2023 (1)
      2024 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Hause, B. (11)
      Lee, J. (7)
      Wasternack, C. (7)
      Scheel, D. (6)
      Romeis, T. (5)
      Voiniciuc, C. (5)
      Eschen-Lippold, L. (4)
      Stenzel, I. (4)
      Trujillo, M. (4)
      Feussner, I. (3)
      Heilmann, I. (3)
      Miersch, O. (3)
      Rosahl, S. (3)
      Tissier, A. (3)
      Yang, B. (3)
      Bethke, G. (2)
      Clemens, S. (2)
      Fester, T. (2)
      Franken, P. (2)
      Göbel, C. (2)
      Hause, G. (2)
      Heilmann, M. (2)
      Herklotz, S. (2)
      Holdsworth, M. J. (2)
      Hoorn, R. A. (2)
      Jones, J. D. G. (2)
      Krajinski, F. (2)
      Kramell, R. (2)
      Langen, G. (2)
      Marillonnet, S. (2)
      Naumann, C. (2)
      Rajjou, L. (2)
      Reski, R. (2)
      Robatzek, S. (2)
      Schulze, S. (2)
      Schulze-Lefert, P. (2)
      Schuster, M. (2)
      Usadel, B. (2)
      Westermann, B. (2)
      Zuccaro, A. (2)
      Acosta, I. F. (1)
      Aharoni, A. (1)
      Ahkami, A. H. (1)
      Ajioka, J. (1)
      Alexander, D. (1)
      Antolín-Llovera, M. (1)
      Ané, J.-M. (1)
      Asai, S. (1)
      Ay, N. (1)
      Bachmair, A. (1)
      Balarynová, J. (1)
      Balcke, G. U. (1)
      Banfield, M. J. (1)
      Barth, O. (1)
      Barthel, K. (1)
      Baulcombe, D. C. (1)
      Bednarek, P. (1)
      Bednář, P. (1)
      Beike, A. K. (1)
      Bellucci, M. (1)
      Boch, A. (1)
      Bode, J. (1)
      Bonas, U. (1)
      Bonkowski, M. (1)
      Bouwmeester, H. (1)
      Bragg, J. (1)
      Brandt, W. (1)
      Breakspear, A. (1)
      Brutnell, T. P. (1)
      Bucher, M. (1)
      Bürstenbinder, K. (1)
      Büttner, D. (1)
      Cai, H. (1)
      Calderón Villalobos, L. I. A. (1)
      Camehl, I. (1)
      Castresana, C. (1)
      Cechová, M. Z. (1)
      Chen, C.-C. (1)
      Clarke, S. M. (1)
      Clauß, K. (1)
      Conrad, U. (1)
      Conrads, B. (1)
      Cristescu, S. M. (1)
      Damineli, D. S. C. (1)
      Dandekar, T. (1)
      Decker, E. L. (1)
      Delaux, P.-M. (1)
      Delker, C. (1)
      Demchenko, K. (1)
      Denby, K. (1)
      Dieluweit, S. (1)
      Ding, Y. (1)
      Dippe, M. (1)
      Dissmeyer, N. (1)
      Dong, S. (1)
      Druege, U. (1)
      Dörmann, P. (1)
      Edwards, K. J. (1)
      Egler, M. (1)
      Eschen‐Lippold, L. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: New Phytol. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Plant Biol. Remove all filters
Displaying results 1 to 10 of 56.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Publications

Zheng, K.; Lyu, J. C.; Thomas, E. L.; Schuster, M.; Sanguankiattichai, N.; Ninck, S.; Kaschani, F.; Kaiser, M.; Hoorn, R. A.; The proteome of Nicotiana benthamiana is shaped by extensive protein processing New Phytol. 243 1034-1049 (2024) DOI: 10.1111/nph.19891
  • Abstract
  • Internet
  • BibText
  • RIS

SummaryProcessing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming.Here, we used in‐gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor‐like kinases. Transient expression of double‐tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.

Publications

Hansen, C. C.; Sørensen, M.; Bellucci, M.; Brandt, W.; Olsen, C. E.; Goodger, J. Q. D.; Woodrow, I. E.; Lindberg Møller, B.; Neilson, E. H. J.; Recruitment of distinct UDP‐glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L\'Hér New Phytol. 237 999-1013 (2023) DOI: 10.1111/nph.18581
  • Abstract
  • Internet
  • BibText
  • RIS

The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.

Publications

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule‐associated IQD9 orchestrates cellulose patterning in seed mucilage New Phytol. 235 1096-1110 (2022) DOI: 10.1111/nph.18188
  • Abstract
  • Internet
  • BibText
  • RIS

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.

Publications

Voiniciuc, C.; Modern mannan: a hemicellulose\'s journey New Phytol. 234 1175-1184 (2022) DOI: 10.1111/nph.18091
  • Abstract
  • Internet
  • BibText
  • RIS

Hemicellulosic polysaccharides built of b-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant b-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites. In certain algae, mannan microfibrils even replace cellulose as the dominant structural component of the cell wall. Conversely, patterned galactoglucomannan found in Arabidopsis thaliana seed mucilage significantly modulates cell wall architecture and abiotic stress tolerance despite its relatively low content. I also discuss the subcellular requirements for b-mannan biosynthesis, the increasing number of carbohydrate-active enzymes involved in this process, and the players that continue to be puzzling. I discuss how cellulose synthase-like enzymes elongate (gluco)mannans in orthogonal hosts and highlight the discoveries of plant enzymes that add specific galactosyl or acetyl decorations. Hydrolytic enzymes such as endo-b-1,4-mannanases have recently been involved in a wide range of biological contexts including seed germination, wood formation, heavy metal tolerance, and defense responses. Synthetic biology tools now provide faster tracks to modulate the increasingly-relevant mannan structures for improved plant traits and bioproducts.

Publications

Zönnchen, J.; Gantner, J.; Lapin, D.; Barthel, K.; Eschen‐Lippold, L.; Lee Erickson, J.; Landeo Villanueva, S.; Zantop, S.; Kretschmer, C.; Joosten, M. H. A. J.; Parker, J. E.; Guerois, R.; Stuttmann, J.; EDS1 complexes are not required for PRR responses and execute TNL‐ETI from the nucleus in Nicotiana benthamiana New Phytol. 236 2249-2264 (2022) DOI: 10.1111/nph.18511
  • Abstract
  • Internet
  • BibText
  • RIS

Heterodimeric complexes incorporating the lipase-li ke proteins EDS1 wi th PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in A. thaliana, bolstering of signaling and resistance mediated by cell-s u r face pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. •We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in N. benthamiana. •We do not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad can abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation is sufficient for N. benthamianaTNL (Roq1) immunity.•Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-f orming RNLs remains unknown.

Publications

Balarynová, J.; Klčová, B.; Sekaninová, J.; Kobrlová, L.; Cechová, M. Z.; Krejčí, P.; Leonova, T.; Gorbach, D.; Ihling, C.; Smržová, L.; Trněný, O.; Frolov, A.; Bednář, P.; Smýkal, P.; The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication New Phytol. 235 1807–1821 (2022) DOI: 10.1111/nph.18256
  • Abstract
  • Internet
  • BibText
  • RIS

Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.

Publications

Lee, J.; Romeis, T.; An epiphany for plant resistance proteins and its impact on calcium‐based immune signalling New Phytol. 234 769-772 (2022) DOI: 10.1111/nph.18085
  • Internet
  • BibText
  • RIS

0

Publications

Yang, B.; Hofmann, F.; Usadel, B.; Voiniciuc, C.; Seed hemicelluloses tailor mucilage properties and salt tolerance New Phytol. 229 1946-1954 (2021) DOI: 10.1111/nph.17056
  • Abstract
  • Internet
  • BibText
  • RIS

While Arabidopsis seed coat epidermal cells have become an excellent genetic system to study the biosynthesis and structural roles of various cell wall polymers, the physiological function of the secreted mucilaginous polysaccharides remains ambiguous. Seed mucilage is shaped by two distinct classes of highly substituted hemicelluloses along with cellulose and structural proteins, but their interplay has not been explored.We deciphered the functions of four distinct classes of cell wall polymers by generating a series of double mutants with defects in heteromannan, xylan, cellulose, or the arabinogalactan protein SALT-OVERLY SENSITIVE 5 (SOS5), and evaluating their impact on mucilage architecture and seed germination during salt stress.We discovered that muci10 seeds, lacking heteromannan branches, had elevated tolerance to salt stress, while heteromannan elongation mutants exhibited reduced germination in calcium chloride (CaCl2). By contrast, xylan made by MUCILAGE-RELATED21 (MUCI21) was found to be required for the adherence of mucilage pectin to microfibrils made by CELLULOSE SYNTHASE5 (CESA5) as well as to a SOS5-mediated network.Our results indicate that the substitution of xylan and glucomannan in seeds can fine-tune mucilage adherence and salt tolerance, respectively. The study of germinating seeds can thus provide insights into the synthesis, modification and function of complex glycans.

Publications

Wang, S.; Xing, R.; Wang, Y.; Shu, H.; Fu, S.; Huang, J.; Paulus, J. K.; Schuster, M.; Saunders, D. G. O.; Win, J.; Vleeshouwers, V.; Wang, Y.; Zheng, X.; Hoorn, R. A.; Dong, S.; Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity New Phytol. 229 3424-3439 (2021) DOI: 10.1111/nph.17120
  • Abstract
  • Internet
  • BibText
  • RIS

- The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. - We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B.- A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. - This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.

Publications

Rausche, J.; Stenzel, I.; Stauder, R.; Fratini, M.; Trujillo, M.; Heilmann, I.; Rosahl, S.; A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites New Phytol. 229 469-487 (2021) DOI: 10.1111/nph.16853
  • Abstract
  • BibText
  • RIS

Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP.Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted.When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2-dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant–oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM.In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2-dependent processes during plant immunity.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail