logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Books and chapters (41)
      Publication (6)
  • Year
    • 1999 (2)
      2003 (1)
      2006 (2)
      2008 (1)
      2011 (5)
      2013 (2)
      2014 (6)
      2015 (2)
      2016 (7)
      2017 (4)
      2019 (5)
      2020 (5)
      2022 (2)
      2023 (1)
      2025 (2)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Marillonnet, S. (10)
      Dissmeyer, N. (9)
      Hause, B. (6)
      Hoehenwarter, W. (4)
      Schnittger, A. (4)
      Werner, S. (4)
      Engler, C. (3)
      Lee, J. (3)
      Scheel, D. (3)
      Beckers, G. J. M. (2)
      Bürstenbinder, K. (2)
      Calderón Villalobos, L. I. A. (2)
      Conrath, U. (2)
      Eschen-Lippold, L. (2)
      Grützner, R. (2)
      Möller, B. (2)
      Tissier, A. (2)
      Trujillo, M. (2)
      Wasternack, C. (2)
      Weckwerth, W. (2)
      Abel, S. (1)
      Ay, N. (1)
      Balcke, G. U. (1)
      Barth, O. (1)
      Bauer, N. (1)
      Bennewitz, S. (1)
      Clauß, K. (1)
      Delker, C. (1)
      Döll, S. (1)
      Egelhofer, V. (1)
      Faden, F. (1)
      Feussner, I. (1)
      Forner, S. (1)
      Franken, P. (1)
      Furlan, G. (1)
      Gasperini, D. (1)
      Gianinazzi-Pearson, V. (1)
      Halim, V. A. (1)
      Hellmuth, A. (1)
      Hertel, S. C. (1)
      Huck, N. (1)
      Humbeck, K. (1)
      Hussain, H. (1)
      Janik, K. (1)
      Jozefowicz, A. M. (1)
      Klaus, D. (1)
      Klecker, M. (1)
      Klemm, S. (1)
      Kourelis, J. (1)
      Krajinski, F. (1)
      Lassowskat, I. (1)
      Lichtenberger, O. (1)
      Löhr, J. (1)
      Mielke, K. (1)
      Mielke, S. (1)
      Miersch, O. (1)
      Mittelberger, C. (1)
      Mock, H.-P. (1)
      Mot, A. C. (1)
      Naumann, C. (1)
      Neubert, R. H. H. (1)
      Neumann, D. (1)
      Niemeyer, M. (1)
      Palm-Forster, M. A. T. (1)
      Parra, J. O. F. (1)
      Paulus, J. K. (1)
      Poeschl, Y. (1)
      Pusch, S. (1)
      Ranf, S. (1)
      Reichman, P. (1)
      Requena, N. (1)
      Ricardo, M. G. (1)
      Rivera, D. G. (1)
      Rosahl, S. (1)
      Röhrig, H. (1)
      Schreiber, T. (1)
      Schuster, M. (1)
      Schwieger, W. (1)
      Stellmach, H. (1)
      Stenzel, I. (1)
      Sun, X. (1)
      Thieme, F. (1)
      Thomas, M. (1)
      Trempel, F. (1)
      Vasco, A. V. (1)
      Vess, A. (1)
      Wessjohann, L. A. (1)
      Wienkoop, S. (1)
      Zabel, S. (1)
      Zergiebel, L. (1)
      Ziegler, J. (1)
      van der Hoorn, R. A. L. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Methods Mol. Biol. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Plant Biol. Remove all filters
Displaying results 1 to 10 of 47.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5

Books and chapters

Marillonnet, S.; Werner, S.; Golden gate cloning of multigene constructs using the modular cloning system MoClo Schindler D. Methods Mol. Biol. 2850 21-39 (2025) ISBN:978-1-0716-4094-4 DOI: 10.1007/978-1-0716-4220-7_2
  • Abstract
  • Internet
  • BibText
  • RIS

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.

Books and chapters

Grützner, R.; Marillonnet, S.; Golden gate cloning of MoClo standard parts Schindler D. Methods Mol. Biol. 2850 1-19 (2025) ISBN:978-1-0716-4094-4 DOI: 10.1007/978-1-0716-4220-7_1
  • Abstract
  • Internet
  • BibText
  • RIS

Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level-1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.

Books and chapters

Niemeyer, M.; Parra, J. O. F.; Calderón Villalobos, L. I. A.; An in vitro assay to recapitulate hormone-triggered and SCF-mediated protein ubiquitylation Lois, L.M., Trujillo, M. Methods Mol. Biol. 2581 43-56 (2023) ISBN:978-1-0716-2783-9 DOI: 10.1007/978-1-0716-2784-6_4
  • Abstract
  • Internet
  • BibText
  • RIS

Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.

Books and chapters

Vasco, A. V.; Ricardo, M. G.; Rivera, D. G.; Wessjohann, L. A.; Ligation, Macrocyclization, and Simultaneous Functionalization of Peptides by Multicomponent Reactions (MCR) Methods Mol. Biol. 2371 143-157 (2022) ISBN:978-1-0716-1688-8 DOI: 10.1007/978-1-0716-1689-5_8
  • Abstract
  • Internet
  • BibText
  • RIS

Multicomponent reactions (MCRs) are recently expanding the plethora of solid-phase protocols for the synthesis and derivatization of peptides. Herein, we describe a solid-phase-compatible strategy based on MCRs as a powerful strategy for peptide cyclization and ligation . We illustrate, using Gramicidin S as a model peptide, how the execution of on-resin Ugi reactions enables the simultaneous backbone N-functionalization and cyclization, which are important types of derivatizations in peptide-based drug development or for incorporation of conjugation handles, or labels.

Books and chapters

Schuster, M.; Paulus, J. K.; Kourelis, J.; van der Hoorn, R. A. L.; Purification of His-tagged proteases from the apoplast of agroinfiltrated N. benthamiana Marina Klemenčič, Simon Stael, Prof. Dr. Pitter F. Huesgen Methods Mol. Biol. 2447 53-66 (2022) ISBN:978-1-0716-2078-6 DOI: 10.1007/978-1-0716-2079-3_5
  • Abstract
  • Internet
  • BibText
  • RIS

Protein expression in plants by agroinfiltration and subsequent purification is increasingly used for the biochemical characterization of plant proteins. In this chapter we describe the purification of secreted, His-tagged proteases from the apoplast of agroinfiltrated Nicotiana benthamiana using immobilized metal affinity chromatography (IMAC). We show quality checks for the purified protease and discuss potential problems and ways to circumvent them. As a proof of concept, we produce and purify tomato immune protease Pip1 and demonstrate that the protein is active after purification.

Books and chapters

Mielke, S.; Gasperini, D.; Plant–Insect Bioassay for Testing Arabidopsis Resistance to the Generalist Herbivore Spodoptera littoralis Champion, A. & Laplaze, L., eds. Methods Mol. Biol. 2085 69-78 (2020) ISBN:978-1-0716-0142-6 DOI: 10.1007/978-1-0716-0142-6_5
  • Abstract
  • BibText
  • RIS

Jasmonates are essential engineers of plant defense responses against many pests, including herbivorous insects. Herbivory induces the production of jasmonic acid (JA) and its bioactive conjugate jasmonoyl-l-isoleucine (JA-Ile), which then triggers a large transcriptional reprogramming to promote plant acclimation. The contribution of the JA pathway, including its components and regulators, to defense responses against insect herbivory can be evaluated by conducting bioassays with a wide range of host plants and insect pests. Here, we describe a detailed and reproducible protocol for testing feeding behavior of the generalist herbivore Spodoptera littoralis on the model plant Arabidopsis thaliana and hence infer the contribution of JA-mediated plant defense responses to a chewing insect.

Books and chapters

Marillonnet, S.; Werner, S.; Assembly of Multigene Constructs Using the Modular Cloning System MoClo In: Chandran S., George K. Methods Mol. Biol. 2205 125-141 (2020) ISBN:978-1-0716-0907-1 DOI: 10.1007/978-1-0716-0908-8_8
  • Abstract
  • BibText
  • RIS

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.

Books and chapters

Jozefowicz, A. M.; Döll, S.; Mock, H.-P.; Proteomic Approaches to Identify Proteins Responsive to Cold Stress Hincha, D. K. & Zuther, E., eds. Methods Mol. Biol. 2156 161-170 (2020) ISBN:978-1-0716-0660-5 DOI: 10.1007/978-1-0716-0660-5_12
  • Abstract
  • BibText
  • RIS

Changing environmental conditions greatly affect the accumulation of many proteins; therefore, the analysis of alterations in the proteome is essential to understand the plant response to abiotic stress. Proteomics provides a platform for the identification and quantification of plant proteins responsive to cold stress and taking part in cold acclimation. Here, we describe the preparation of proteins for LC-MS measurement to monitor the changes of protein patterns during cold treatment in Arabidopsis thaliana. In our protocol, proteins are precipitated using TCA/acetone, quantified with 2D Quant Kit and digested with trypsin using a filter-based method and analyzed using an LC-MS approach. The acquired results can be further applied for label-free protein quantification.

Books and chapters

Hause, B.; Requena, N.; Detection of Arbuscular Mycorrhizal Fungal Gene Expression by In Situ Hybridization Ferrol, N. & Lanfranco, L., eds. Methods Mol. Biol. 2146 185-196 (2020) ISBN:978-1-0716-0603-2 DOI: 10.1007/978-1-0716-0603-2_14
  • Abstract
  • BibText
  • RIS

The complexity of the obligate symbiotic interaction of arbuscular mycorrhizal (AM) fungi and their host roots requires sophisticated molecular methods. In particular, to capture the dynamic of the interaction, cell-specific methods for gene expression analysis are required. In situ hybridization is a technique that allows to determine the location of transcript accumulation within tissues, being of special interest for these fungi that cannot be genetically modified. The method requires proper fixation and embedding methods as well as specific probes for the hybridization allowing detection of specific transcripts. In this chapter, we present a method to prepare roots, which have established a symbiosis with an arbuscular mycorrhizal fungus for the detection of fungal transcripts. This includes chemical fixation, subsequent embedding in a suitable medium, sectioning and pretreatment of sections, the hybridization procedure itself, as well as the immunological detection of RNA-RNA hybrids.

Books and chapters

Grützner, R.; Marillonnet, S.; Generation of MoClo Standard Parts Using Golden Gate Cloning In: Chandran S., George K. Methods Mol. Biol. 2205 107-123 (2020) ISBN:978-1-0716-0907-1 DOI: 10.1007/978-1-0716-0908-8_7
  • Abstract
  • Internet
  • BibText
  • RIS

Availability of efficient DNA assembly methods is a basic requirement for synthetic biology. A variety of modular cloning systems have been developed, based on Golden Gate cloning for DNA assembly, to enable users to assemble multigene constructs from libraries of standard parts using a series of successive one-pot assembly reactions. Standard parts contain the DNA sequence coding for a genetic element of interest such as a promoter, coding sequence or terminator. Standard parts for the modular cloning system MoClo must be flanked by two BsaI restriction sites and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of basic parts. This protocol requires the following steps (1) defining the type of basic part that needs to be cloned, (2) designing primers for amplification, (3) performing PCR amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large basic parts, it is preferable to first clone subparts as intermediate level −1 constructs. These subparts are sequenced individually and are then further assembled to make the final level 0 module.

  • 1
  • 2
  • 3
  • 4
  • 5

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail