- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Publications
AbstractBidirectional root–shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota–root–shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth–defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.
Publications
Alternative splicing provides a fundamental and ubiquitous mechanism of gene regulation. Stimuli-induced retention of introns introduces novel proteoforms with altered signalling output: full-length CPK28 blocks immune signalling, while a truncated variant, lacking calcium responsiveness, promotes it.
Publications
Plants adjust the balance between growth and defence using photoreceptors and jasmonates. Levels of active jasmonates are reduced in a phytochrome B-dependent manner by upregulation of a 12-hydroxyjasmonate sulfotransferase, leading to increase in shade avoidance and decrease in defence.
Publications
Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publications
The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple‐growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11‐like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11‐like proteins seem to be key players in phytoplasmal infection.
Publications
Immunity against pathogen infection depends on a host's ability to sense invading pathogens and to rapidly trigger defence reactions that block pathogen proliferation. Both plants and animals detect conserved structural motifs of microbe‐specific compounds, so‐called microbe‐associated molecular patterns (MAMPs), through germline‐encoded immune sensors, which are accordingly termed pattern recognition receptors (PRRs) (Akira et al., 2006; Boller and Felix, 2009). Activated PRRs initiate signal transduction and trigger innate immune responses. MAMPs are generally derived from elements essential for microbial fitness and are conserved across species, thus enabling the host to detect a range of potential pathogens. In mammals, innate immune sensing of MAMPs is not only crucial for basal immune responses but is also tightly connected with and required for a subsequent adaptive, antibody‐mediated immunity (Akira et al., 2006; Janeway and Medzhitov, 2002). Plants, lacking an adaptive immune system, have apparently evolved a greater capacity to detect a broader repertoire of MAMPs. Different plant species possess distinct sets of highly specific PRRs, but the downstream signalling pathways are rather conserved and converge on common signalling steps. This allows the transfer of PRRs, even to different plant families, whilst maintaining their functionality and specificity (Zipfel, 2014). This also enables researchers to use well‐studied, genetically amenable model systems for the identification of MAMPs and their respective PRRs. Several examples of interfamily PRR transfer have demonstrated that the introduction of novel PRRs into plant species can confer relevant levels of resistance to otherwise susceptible plants (e.g. Afroz et al., 2011; Hao et al., 2015; Lacombe et al., 2010; Mendes et al., 2010; Schoonbeek et al., 2015; Tripathi et al., 2014). Hence, MAMP sensing by PRRs has great potential for the engineering of disease resistance in crop plants. In recent years, it has therefore become a major task to identify and isolate MAMPs from a range of microorganisms, and their respective PRRs, to study their role in innate immunity and their application potential.
Publications
Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.
Publications
Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus.TaxonomyRhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza.Disease symptomsRhynchosporium commune causes scald‐like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf.Life cycleRhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn‐sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development.Detection and quantificationRhynchosporium commune produces unique beak‐shaped, one‐septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season.Disease controlThe main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Publications
Harpin HrpZ is one of the most abundant proteins secreted through the pathogenesis‐associated type III secretion system of the plant pathogen Pseudomonas syringae. HrpZ shows membrane‐binding and pore‐forming activities in vitro, suggesting that it could be targeted to the host cell plasma membrane. We studied the native molecular forms of HrpZ and found that it forms dimers and higher order oligomers. Lipid binding by HrpZ was tested with 15 different membrane lipids, with HrpZ interacting only with phosphatidic acid. Pore formation by HrpZ in artificial lipid vesicles was found to be dependent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores in vesicles prepared from Arabidopsis thaliana plasma membrane, providing evidence for the suggested target of HrpZ in the host. To map the functions associated with HrpZ, we constructed a comprehensive series of deletions in the hrpZ gene derived from P. syringae pv. phaseolicola, and studied the mutant proteins. We found that oligomerization is mainly mediated by a region near the C‐terminus of the protein, and that the same region is also essential for membrane pore formation. Phosphatidic acid binding seems to be mediated by two regions separate in the primary structure. Tobacco, a nonhost plant, recognizes, as a defence elicitor, a 24‐amino‐acid HrpZ fragment which resides in the region indispensable for the oligomerization and pore formation functions of HrpZ.