- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publications
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co‐substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin‐containing protein photosensitizers as a new general tool for light‐controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self‐sufficient photo‐enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.Graphical Abstract Unspecific peroxygenases (UPOs) have recently gained attraction as versatile oxyfunctionalization catalysts. One shortcoming, however, is their susceptibility towards the co-substrate hydrogen peroxide. As a solution, the concept of light-dependent UPO biocatalysis with genetically encoded flavin-containing photosensitizer proteins for in situ hydrogen peroxide production is introduced.
Publications
Research data management (RDM) is needed to assist experimental advances and data collection in the chemical sciences. Many funders require RDM because experiments are often paid for by taxpayers and the resulting data should be deposited sustainably for posterity. However, paper notebooks are still common in laboratories and research data is often stored in proprietary and/or dead-end file formats without experimental context. Data must mature beyond a mere supplement to a research paper. Electronic lab note-books (ELN) and laboratory information managementsystems (LIMS) allow researchers to manage data better and they simplify research and publication. Thus, an agreement is needed on minimum information standards for data handling to support structured approaches to data reporting. As digitalization becomes part of curricular teaching, future generations of digital native chemists will embrace RDM and ELN as an organic part of their research.
Publications
In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publications
The functionalization of C−H bonds with non‐precious metal catalysts is an important research area for the development of efficient and sustainable processes. Herein, we describe the development of iron porphyrin catalyzed reactions of diazoacetonitrile with N‐heterocycles yielding important precursors of tryptamines, along with experimental mechanistic studies and proof‐of‐concept studies of an enzymatic process with YfeX enzyme. By using readily available FeTPPCl, we achieved the highly efficient C−H functionalization of indole and indazole heterocycles. These transformations feature mild reaction conditions, excellent yields with broad functional group tolerance, can be conducted on gram scale, and thus provide a unique streamlined access to tryptamines.
Publications
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publications
The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple‐growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11‐like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11‐like proteins seem to be key players in phytoplasmal infection.
Publications
An important development in the field of macrocyclization strategies towards molecular cages is described. The approach comprises the utilization of a double Ugi four‐component macrocyclization for the assembly of macromulticycles with up to four different tethers, that is, hybrid cages. The innovation of this method rests on setting up the macromulticycle connectivities not through the tethers but through the bridgeheads, which in this case involve N‐substituted amino acids. Both dilution and metal‐template‐driven macrocyclization conditions were implemented with success, enabling the one‐pot formation of cryptands and cages including steroidal, polyether, heterocyclic, peptidic, and aryl tethers. This method demonstrates substantial complexity‐generating character and is suitable for applications in molecular recognition and catalysis.
Publications
Immunity against pathogen infection depends on a host's ability to sense invading pathogens and to rapidly trigger defence reactions that block pathogen proliferation. Both plants and animals detect conserved structural motifs of microbe‐specific compounds, so‐called microbe‐associated molecular patterns (MAMPs), through germline‐encoded immune sensors, which are accordingly termed pattern recognition receptors (PRRs) (Akira et al., 2006; Boller and Felix, 2009). Activated PRRs initiate signal transduction and trigger innate immune responses. MAMPs are generally derived from elements essential for microbial fitness and are conserved across species, thus enabling the host to detect a range of potential pathogens. In mammals, innate immune sensing of MAMPs is not only crucial for basal immune responses but is also tightly connected with and required for a subsequent adaptive, antibody‐mediated immunity (Akira et al., 2006; Janeway and Medzhitov, 2002). Plants, lacking an adaptive immune system, have apparently evolved a greater capacity to detect a broader repertoire of MAMPs. Different plant species possess distinct sets of highly specific PRRs, but the downstream signalling pathways are rather conserved and converge on common signalling steps. This allows the transfer of PRRs, even to different plant families, whilst maintaining their functionality and specificity (Zipfel, 2014). This also enables researchers to use well‐studied, genetically amenable model systems for the identification of MAMPs and their respective PRRs. Several examples of interfamily PRR transfer have demonstrated that the introduction of novel PRRs into plant species can confer relevant levels of resistance to otherwise susceptible plants (e.g. Afroz et al., 2011; Hao et al., 2015; Lacombe et al., 2010; Mendes et al., 2010; Schoonbeek et al., 2015; Tripathi et al., 2014). Hence, MAMP sensing by PRRs has great potential for the engineering of disease resistance in crop plants. In recent years, it has therefore become a major task to identify and isolate MAMPs from a range of microorganisms, and their respective PRRs, to study their role in innate immunity and their application potential.
Publications
In an endeavor to provide an efficient route to natural product hybrids, described herein is an efficient, highly stereoselective, one‐pot process comprising an organocatalytic conjugate addition of 1,3‐dicarbonyls to α,β‐unsaturated aldehydes followed by an intramolecular isocyanide‐based multicomponent reaction. This approach enables the rapid assembly of complex natural product hybrids including up to four different molecular fragments, such as hydroquinolinone, chromene, piperidine, peptide, lipid, and glycoside moieties. The strategy combines the stereocontrol of organocatalysis with the diversity‐generating character of multicomponent reactions, thus leading to structurally unique peptidomimetics integrating heterocyclic, lipidic, and sugar moieties.