- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The reduction of activated C=C double bonds is an important reaction in synthetic chemistry owing to the potential formation of up to two new stereogenic centers. Artificial nicotinamide cofactors were recently presented as alternative suppliers of hydride equivalents needed for alkene reduction. To study the effect of cofactors on the reduction of activated alkenes, a set of N‐substituted synthetic nicotinamide cofactors with differing oxidation potentials were synthesized and their electrochemical and kinetic behavior was studied. The effects of the synthetic cofactors on enzyme activity of four ene reductases are outlined in this study, where the cofactor mimic with an N‐substituted 4‐hydroxy‐phenyl residue led to a sixfold higher vmax relative to the natural cofactor NADH.