- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
This is a detailed and user-friendly protocol for the cultivation and successful crossing of Lotus japonicus (L. japonicus) e.g. for the generation of higher order mutants, based on methods previously reported (Grant et al., 1962; Handberg and Stougaards, 1992; Jiang and Gresshoff, 1997; Pajuelo and Stougaard, 2005).
Publications
In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publications
Die Funktionalisierung von C‐H‐Bindungen mit Nichtedelmetallkatalysatoren ist ein wichtiges Forschungsgebiet für die Entwicklung effizienter und nachhaltiger Synthesemethoden. In diesem Artikel beschreiben wir die Entwicklung Eisenporphyrin‐katalysierter Reaktionen von Diazoacetonitril mit N‐Heterocyclen um so einen Zugang zu wertvollen Vorläufern zu Tryptaminen zu erhalten. Darüberhinaus berichten wir über experimentelle mechanistische Studien sowie über konzeptionelle Studien zu einer enzymatischen Synthese mit dem Enzym YfeX. Mit dem leicht zugänglichen FeTPPCl‐Katalysator konnten wir hoch effiziente C‐H‐Funktionalisierungsreaktionen von Indol und Indazol‐Heterocyclen zeigen. Diese Reaktionen können unter milden Reaktionsbedingungen, mit exzellenten Ausbeuten und großer Toleranz funktioneller Gruppen inklusive Anwendungen im Grammmaßstab durchgeführt werden und eröffnen so einen einzigartigen, effizienten Zugang zu Tryptaminen.
Publications
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publications
The smut fungus Ustilago maydis is an established model organism for elucidating how biotrophic pathogens colonize plants and how gene families contribute to virulence. Here we describe a step by step protocol for the generation of CRISPR plasmids for single and multiplexed gene editing in U. maydis. Furthermore, we describe the necessary steps required for generating edited clonal populations, losing the Cas9 containing plasmid, and for selecting the desired clones.
Publications
An important development in the field of macrocyclization strategies towards molecular cages is described. The approach comprises the utilization of a double Ugi four‐component macrocyclization for the assembly of macromulticycles with up to four different tethers, that is, hybrid cages. The innovation of this method rests on setting up the macromulticycle connectivities not through the tethers but through the bridgeheads, which in this case involve N‐substituted amino acids. Both dilution and metal‐template‐driven macrocyclization conditions were implemented with success, enabling the one‐pot formation of cryptands and cages including steroidal, polyether, heterocyclic, peptidic, and aryl tethers. This method demonstrates substantial complexity‐generating character and is suitable for applications in molecular recognition and catalysis.
Publications
In addition to synthesizing and secreting copious amounts of pectic polymers (Young et al., 2008), Arabidopsis thaliana seed coat epidermal cells produce small amounts of cellulose and hemicelluloses typical of secondary cell walls (Voiniciuc et al., 2015c). These components are intricately linked and are released as a large mucilage capsule upon hydration of mature seeds. Alterations in the structure of minor mucilage components can have dramatic effects on the architecture of this gelatinous cell wall. The immunolabeling protocol described here makes it possible to visualize the distribution of specific polysaccharides in the seed mucilage capsule.
Publications
Damage to plant organs through both biotic and abiotic injury is very common in nature. Arabidopsis thaliana 5-day-old (5-do) seedlings represent an excellent system in which to study plant responses to mechanical wounding, both at the site of the damage and in distal unharmed tissues. Seedlings of wild type, transgenic or mutant lines subjected to single or repetitive cotyledon wounding can be used to quantify morphological alterations (e.g., root length, Gasperini et al., 2015), analyze the dynamics of reporter genes in vivo (Larrieu et al., 2015; Gasperini et al., 2015), follow transcriptional changes by quantitative RT-PCR (Acosta et al., 2013; Gasperini et al., 2015) or examine additional aspects of the wound response with a plethora of downstream procedures. Here we illustrate how to rapidly and reliably wound cotyledons of young seedlings, and show the behavior of two promoters driving the expression of β-glucuronidase (GUS) in entire seedlings and in the primary root meristem, following single or repetitive cotyledon wounding respectively. We describe two procedures that can be easily adapted to specific experimental needs.
Publications
The Arabidopsis thaliana seed coat produces large amounts of cell wall polysaccharides, which swell out of the epidermal cells upon hydration of the mature dry seeds. While most mucilage polymers immediately diffuse in the surrounding solution, the remaining fraction tightly adheres to the seed, forming a dense gel-like capsule (Macquet et al., 2007). Recent evidence suggests that the adherence of mucilage is mediated by complex interactions between several cell wall components (Griffiths et al., 2014; Voiniciuc et al., 2015a). Therefore, it is important to evaluate how different cell wall mutants impact this mucilage property. This protocol facilitates the analysis of monosaccharides in sequentially extracted mucilage fractions, and quantifies the detachment of each component from seeds.
Publications
The Arabidopsis thaliana seed coat epidermis produces copious amounts of mucilage polysaccharides (Haughn and Western, 2012). Characterization of mucilage mutants has identified novel genes required for cell wall biosynthesis and modification (North et al., 2014). The biochemical analysis of seed mucilage is essential to evaluate how different mutations affect cell wall structure (Voiniciuc et al., 2015c). Here we describe a robust method to screen the monosaccharide composition of Arabidopsis seed mucilage using ion chromatography (IC). Mucilage from up to 48 samples can be extracted and prepared for IC analysis within 24 h (only 4 h hands-on). Furthermore, this protocol enables fast separation (31 min per sample), automatic detection and quantification of both neutral and acidic sugars.