logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 81
      Books and chapters 2
  • Year
    • 1989 4
      1990 6
      1991 3
      1992 9
      1993 18
      1994 30
      1995 53
      1996 74
      1997 150
      1998 120
      1999 149
      2000 153
      2001 140
      2002 206
      2003 195
      2004 201
      2005 240
      2006 252
      2007 270
      2008 261
      2009 224
      2010 216
      2011 197
      2012 303
      2013 200
      2014 231
      2015 231
      2016 244
      2017 182
      2018 136
      2019 167
      2020 124
      2021 109
      2022 113
      2023 103
      2024 98
      2025 62
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Plant J. 9
      Plant Physiol. 6
      Proc. Natl. Acad. Sci. U.S.A. 6
      Angew. Chem. 3
      Angew. Chem. Int. Ed. 3
      Bot. Acta 3
      Cell 3
      Eur. J. Plant Pathol. 3
      J. Mol. Biol. 3
      J. Plant Growth Regul. 3
      J. Plant Physiol. 3
      Molec. Gen. Genet. 3
      Physiol. Plant. 3
      Phytochemistry 3
      Plant Cell 3
      Plant Cell Tiss. Organ Cult. 3
      Plant Growth Regul. 3
      Plant Mol. Biol. 3
      Planta 3
      Planta Med. 3
      Synth. Commun. 3
      Tetrahedron Lett. 3
      Z. Naturforsch. C 3
      ACS Sym. Ser. 1
      Stud. Nat. Prod. Chem. 1
  • Author Sorted by frequency and by alphabetical order
    • Wasternack, C. 18
      Atzorn, R. 15
      Maier, W. 15
      Parthier, B. 15
      Abel, S. 12
      Baumert, A. 12
      Gröger, D. 12
      Scheel, D. 12
      Theologis, A. 12
      Schmidt, J. 10
      Wessjohann, L. A. 10
      Hahlbrock, K. 9
      Nürnberger, T. 9
      Brückner, C. 6
      Feussner, I. 6
      Hause, B. 6
      Lehmann, J. 6
      Leopold, J. 6
      Matern, U. 6
      Nennstiel, D. 6
      Schliemann, W. 6
      Schneider, G. 6
      Strack, D. 6
      Wessjohann, L. 6
      Peschke, B. 4
      Rawlins, D. B. 4
      Wender, P. A. 4
      Braga, A. L. 3
      Brash, A. 3
      Deutzmann, R. 3
      Dornelles, L. 3
      Galarza, F. A. D. 3
      Gottstein, D. 3
      Harms, K. 3
      Hohlfeld, H. 3
      Jabs, T. 3
      Jarosch, B. 3
      Junghanns, K. T. 3
      Kneusel, R. E. 3
      Kogel, K.-H. 3
      Kramell, R. 3
      Kühn, H. 3
      Machado, E. C. 3
      Miersch, O. 3
      Morel, A. F. 3
      Nguyen, M. D. 3
      Oeller, P. W. 3
      Ortel, B. 3
      Peipp, H. 3
      Pena-Cortes, H. 3
      Rademacher, W. 3
      Reinbothe, S. 3
      Sacks, W. 3
      Sacks, W. R. 3
      Schiffer, R. 3
      Schumann, B. 3
      Schurmann, W. 3
      Sembdner, G. 3
      Silveira, C. C. 3
      Vörös, K. 3
      Willmitzer, L. 3
      Wray, V. 3
      Zeni, G. 3
      zur Nieden, U. 3
      Adam, G. 1
      Badham, N. F. 1
      Conway, S. P. 1
      Floreancig, P. E. 1
      Glass, T. E. 1
      Houze, J. B. 1
      Krauss, N. E. 1
      Lee, D. 1
      Marquess, D. G. 1
      McGrane, P. L. 1
      Meng, W. 1
      Mucciaro, T. P. 1
      Mühlebach, M. 1
      Natchus, M. G. 1
      Ohkuma, T. 1
      Porzel, A. 1
      Schneider, B. 1
      Shuker, A. J. 1
      Sutton, J. C. 1
      Taylor, R. E. 1
      Tomooka, K. 1
      Voigt, B. 1
  • Year
  • Type of publication
Search narrowed by: Year: 1994 Year: 1995 Remove all filters
Displaying results 1 to 10 of 83.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Publications

Wender, P. A.; Wessjohann, L. A.; Peschke, B.; Rawlins, D. B.; The pinene path to taxol: Readily accessible a-ring building blocks based on novel alkyl- and alkenyllithium reagents with internal carbonyl groups Tetrahedron Lett. 36 7181-7184 (1995) DOI: 10.1016/0040-4039(95)01491-Y
  • Abstract
  • BibText
  • RIS

The synthesis and chemistry of the novel reagents and stereochemically defined taxane A-ring building blocks 7e–9e are described, providing the basis for the solution to problems previously encountered in the development of syntheses of taxol and its analogs based on pinene.

Publications

Wasternack, C.; Atzorn, R.; Leopold, J.; Feussner, I.; Rademacher, W.; Parthier, B.; Synthesis of jasmonate-induced proteins in barley (Hordeum vulgare) is inhibited by the growth retardant tetcyclacis Physiol. Plant. 94 335-341 (1995) DOI: 10.1111/j.1399-3054.1995.tb05320.x
  • Abstract
  • BibText
  • RIS

BarJey leaf segments treated with jasmonate respond with the synthesis of specific proseins, referred to as jasmonate‐induced proteins (JIPs). Application of abscisic acid (ABAl also induced JIP synthesis (Weidhase et al. 1987). In this study the effects of inhibitors on sorbitol‐induced increases of endogenous jasmonates and ABA were investigated. The promotion of jasmonates by sorbitol was inhibited by the growth retardant tetcyclacis at concentrations as low as 1 ftM. In parallel with the decrease of jasmonates, JIP gene expression was reduced as reflected by a decline in the level of a 23‐kDa protein UIP‐23) and mRNAs of JIP‐6 and JIP‐23. 12‐Oxo‐phytodienoic acid, an inlermediale in the lipoxygenase (LOX) pathway leading to jasmonic acid was able to overcome the inhibition by tetcyclacis and increases both the endogenous jasmonate content and transcript accumulation. This suggests that tetcyclacis acts upstream of 12‐oxo‐phytodienoic acid and in keeping with this proposal, an increase in relative LOX activity was detected after tetcyclacis treatment. Although tetcyclacis was shown to inhibit the degradation of ABA to phaseic acid, its effect on jasmonate synthesis is much more pronounced.

Publications

Sacks, W.; Nürnberger, T.; Hahlbrock, K.; Scheel, D.; Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma Molec. Gen. Genet. 246 45-55 (1995) DOI: 10.1007/BF00290132
  • Abstract
  • BibText
  • RIS

cDNA sequences encoding the 42 kDa glycoprotein elicitor from the oomycete, Phytophthora megasperma, that induces the defense response in parsley have been cloned and sequenced. The 5′ end of the mRNA matches a consensus derived from sequences surrounding the transcription initiation sites of seven other oomycete genes. The major transcript of 1802 nucleotides contains a 529-codon open reading frame, which was predicted to encode a 57 kDa precursor protein. On the basis of peptide sequencing, the N-terminus of the mature protein is at position 163, suggesting that proteolytic processing events, in addition to signal peptide cleavage, generate the protein purified from the fungal culture filtrate. Expression studies in Escherichia coli with the cDNA as well as smaller subfragments demonstrated that a region of 47 amino acids located in the C-terminal third of the protein was sufficient to confer elicitor activity. The gene encoding the elicitor was found to be a member of a multigene family in P. megasperma. Homologous families of differing sizes were found in all eight other Phytophthora species tested, but not in other filamentous fungi including other Oomycetes. No significant similarity of the elicitor preprotein to sequences present in the databases has yet been detected.

Publications

Nürnberger, T.; Nennstiel, D.; Hahlbrock, K.; Scheel, D.; Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes. Proc. Natl. Acad. Sci. U.S.A. 92 2338-2342 (1995) DOI: 10.1073/pnas.92.6.2338
  • Abstract
  • BibText
  • RIS

An oligopeptide elicitor from Phytophthora megasperma f.sp. glycinea (Pep-13) that induces phytoalexin accumulation in cultured parsley cells was radioiodinated and chemically cross-linked to its binding site in microsomal and plasma membrane preparations with each of three homobifunctional reagents. Analysis by SDS/PAGE and autoradiography of solubilized membrane proteins demonstrated labeling of a 91-kDa protein, regardless of which reagent was used. Cross-linking of this protein was prevented by addition of excess unlabeled Pep-13. The competitor concentration found to half-maximally reduce the intensity of the cross-linked band was 6 nM, which is in good agreement with the IC50 value of 4.7 nM, obtained from ligand binding assays. No crosslinking of 125I-labeled Pep-13 was observed by using microsomal membranes from three other plant species, indicating species-specific occurrence of the binding site. Coupling of 125I-Pep-13 to the parsley 91-kDa protein required the same structural elements within the ligand as was recently reported for binding of 125I-Pep-13 to parsley microsomes, elicitor-induced stimulation of ion fluxes across the plasma membrane, the oxidative burst, the expression of defense-related genes, and phytoalexin production. These findings suggest that the 91-kDa protein identified in parsley membranes is the oligopeptide elicitor receptor mediating activation of a multicomponent defense response.

Publications

Morel, A. F.; Machado, E. C.; Wessjohann, L. A.; Cyclopeptide alkaloids of Discaria febrifuga (Rhamnaceae) Phytochemistry 39 431-434 (1995) DOI: 10.1016/0031-9422(94)00924-I
  • Abstract
  • BibText
  • RIS

From the methanol extract of the root bark of Discaria febrifuga Mart., in addition to the already described alkaloid, a new peptide alkaloid discarine-L has been isolated and its structure elucidated. This alkaloid differs from most of the known 14-membered peptide alkaloids by a 2-hydroxy-2-phenethylamine residue.

Publications

Maier, W.; Baumert, A.; Gröger, D.; Partial Purification and Characterization of S-Adenosyl-L- Methionine:Anthranilic Acid N-Methyltransferase from Ruta Cell Suspension Cultures J. Plant Physiol. 145 1-6 (1995) DOI: 10.1016/S0176-1617(11)81837-7
  • Abstract
  • BibText
  • RIS

S-Adenosyl-L-methionine: anthranilic acid N-methyltransferase has been purified from cell suspensioncultures of Ruta graveolens by using a combination of gel filtration and ion exchange chromatography. This particular N-methyltransferase, which catalyzes the first pathway specific step in acridone alkaloid biosynthesis, was purified 370-fold. The enzyme has a pH optimum of 7.8, a Mr of 70,000 on gel filtration and a Mr of 62,000 on SDS-PAGE. The properties, the substrate specificity and the Michaelis-Menten constants of the purified enzyme were determined. The anthranilic acid specific N-methyltransferase is strongly inhibited by S-adenosyl-L-homocysteine.

Publications

Maier, W.; Peipp, H.; Schmidt, J.; Wray, V.; Strack, D.; Levels of a Terpenoid Glycoside (Blumenin) and Cell Wall-Bound Phenolics in Some Cereal Mycorrhizas Plant Physiol. 109 465-470 (1995) DOI: 10.1104/pp.109.2.465
  • Abstract
  • BibText
  • RIS

Four cereals, Hordeum vulgare (barley), Triticum aestivum (wheat), Secale cereale (rye), and Avena sativa (oat), were grown in a defined nutritional medium with and without the arbuscular mycorrhizal fungus Glomus intraradices. Levels of soluble and cell wall-bound secondary metabolites in the roots of mycorrhizal and nonmycorrhizal plants were determined by high-performance liquid chromatography during the first 6 to 8 weeks of plant development. Whereas there was no difference in the levels of the cell wall-bound hydroxycinnamic acids, 4-coumaric and ferulic acids, there was a fungus-induced change of the soluble secondary root metabolites. The most obvious effect observed in all four cereals was the induced accumulation of a terpenoid glycoside. This compound was isolated and identified by spectroscopic methods (nuclear magnetic resonance, mass spectrometry) to be a cyclohexenone derivative, i.e. blumenol C 9-O-(2[prime]-O-[beta]-glucuronosyl)-[beta]-glucoside. The level of this compound was found to be directly correlated with the degree of root colonization.

Publications

Lehmann, J.; Atzorn, R.; Brückner, C.; Reinbothe, S.; Leopold, J.; Wasternack, C.; Parthier, B.; Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments Planta 197 156-192 (1995) DOI: 10.1007/BF00239952
  • Abstract
  • BibText
  • RIS

The accumulation of abundant proteins and their respective transcripts, induced by 10−4 M cisabscisic acid or 10−5 M jasmonic acid methyl ester, was studied in barley (Hordeum vulgare L.) leaf segments and compared to that resulting from osmotic stress caused by floating the segments on solutions of sorbitol, glucose, polyethyleneglycol (PEG)-6000 or NaCl. Osmotic stress or treatment with abscisic acid led to the synthesis of novel proteins which were identical to jasmonateinduced proteins (JIPs) with respect to immunological properties and molecular masses. The most prominent polypeptides were characterized by molecular masses of 66, 37 and 23 kDa and were newly synthesized. Whereas sorbitol, mannitol, sucrose, glucose and PEG provoked the synthesis of JIPs, 2deoxyglucose and NaCl did not. We provide evidence that the synthesis of JIPs induced by osmotic stress is directly correlated with a preceding rise in endogenous jasmonates. These jasmonates, quantified by an enzyme immunoassay specific for (−)jasmonic acid and its aminoacid conjugates, increased remarkably in leaf segments treated with sorbitol, glucose or other sugars. In contrast, no increase in jasmonates could be observed in tissues exposed to salts (NaCl). The results strengthen the hypothesis that the accumulation of jasmonates, probably by de-novo synthesis, is an intermediate and essential step in a signalling pathway between (osmotic) stress and activation of genes coding for polypeptides of high abundance.

Publications

Kramell, R.; Atzorn, R.; Schneider, G.; Miersch, O.; Brückner, C.; Schmidt, J.; Sembdner, G.; Parthier, B.; Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue J. Plant Growth Regul. 14 29-36 (1995) DOI: 10.1007/BF00212643
  • Abstract
  • BibText
  • RIS

The effect of osmotically active substances on the alteration of endogenous jasmonates was studied in barley (Hordeum vulgare L. cv. Salome) leaf tissue. Leaf segments were subjected to solutions of d-sorbitol, d-mannitol, polyethylene glycol 6000, sodium chloride, or water as a control. Alterations of endogenous jasmonates were monitored qualitatively and quantitatively using immunoassays. The structures of jasmonates isolated were determined on the basis of authentic substances by capillary gas chromatography-mass spectrometry. The stereochemistry of the conjugates was confirmed by high performance liquid chromatography with diastereoisomeric references. In barley leaves, jasmonic acid and its amino acid conjugates, for example, with valine, leucine, and isoleucine, are naturally occurring jasmonates. In untreated leaf segments, only low levels of these native jasmonates were found. After treatment of the leaf tissues with sorbitol, mannitol, as well as with polyethylene glycol, an increase of both jasmonic acid and its conjugates could be observed, depending on the stress conditions used. In contrast, salt stress was without any stimulating effect on the levels of endogenous jasmonates. From barley leaf segments exposed to sorbitol (1m) for 24 h, jasmonic acid was identified as the major accumulating compound. Jasmonic acid-amino acid conjugates increased likewise upon stress treatment.

Publications

Kogel, K.-H.; Ortel, B.; Jarosch, B.; Atzorn, R.; Schiffer, R.; Wasternack, C.; Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp.hordei) is not associated with enhanced levels of endogenous jasmonates Eur. J. Plant Pathol. 101 319-332 (1995) DOI: 10.1007/BF01874788
  • Abstract
  • BibText
  • RIS

Onset of acquired resistance of barley (Hordeum vulgare) chemically induced by 2,6-dichloroisonicotinic acid (DCINA) correlated with the accumulation of mRNA homologous to cDNA pHvJ256 which codes for a soluble leaf-thionin with a Mr. of 6 kDa [Wasternacket al., 1994a]. In the present work, we extend this finding by showing that the thionin transcript also accumulated following treatment of barley with the resistance-inducing compounds 3,5-dichlorosalicylic acid (DCSA), salicylic acid (SA), and an extract fromBacillus subtilis. The polypeptide showed antifungal activity against the biotrophic cereal pathogensErysiphe graminis f.sp.hordei andPuccinia graminis f.sp.tritici which may indicate a possible role in the mechanism of acquired resistance in barley. A thionin transcript hybridizing to pHvJ256 accumulated also in response to application of jasmonates, or treatments that elevated endogenous amounts of the plant growth substance, pointing to the possibility that signaling mediating defense responses in barley involves jasmonates. However, a topical spray application of jasmonic acid (JA) or jasmonate methyl ester (JM) did not protect barley leaves against infection byE. graminis. Performing a kinetic analysis by an enzyme immunoassay specific for (−)-JA, (−)-JM, and its amino acid conjugates, accumulation of jasmonates was detected in osmotically stressed barley but not at the onset of chemically induced or genetically based resistance governed by the powdery mildew resistance genesMlg, Mla 12, ormlo 5. Furthermore, the jasmonate-inducible proteins JIP-23 and JIP-60 were strongly induced following JM- but not DCINA-treatment or inoculation withE. graminis. Hence, in barley, no indications were found in favour for the previously proposed model of a lipid-based signaling pathway via jasmonates mediating expression of resistance in plants against pathogens.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail