logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 6
  • Year
    • 1995 3
      1996 12
      1997 9
      1998 3
      1999 9
      2000 12
      2001 12
      2002 21
      2003 6
      2004 3
      2005 12
      2006 6
      2007 9
      2008 18
      2009 3
      2010 9
      2011 3
      2012 6
      2017 1
      2021 1
      2025 1
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry 24
      Plant Physiol. 15
      J. Exp. Bot. 12
      Vietnam J. Chem. 12
      FEBS Lett. 9
      Amino Acids 6
      Angew. Chem. 6
      Angew. Chem. Int. Ed. 6
      Eur. J. Org. Chem. 6
      J. Org. Chem. 6
      J. Plant Physiol. 6
      Plant Biol. 6
      Plant Cell Environ. 6
      Plant Cell Physiol. 6
      Plant J. 6
      Planta 6
      Trends Plant Sci. 6
      0 3
      Biochem. Syst. Ecol. 3
      Biochimie 3
      Bioorg. Med. Chem. 3
      Bull. Chem. Soc. Ethiop. 3
      Can. J. Chem. 3
      Carbohyd. Res. 3
      Chem. Commun. 3
      Chem. Rev. 3
      ChemBioChem 3
      ChemInform 3
      Curr. Microbiol. 3
      Curr. Opin. Plant Biol. 3
      Genome 3
      Herzogia 3
      Inorg. Chim. Acta 3
      J. Am. Chem. Soc. 3
      J. Biol. Chem. 3
      J. Mass Spectrom. 3
      Jap. Soc. Chem. Regul Plants, Abstr. 3
      Lett. Org. Chem. 3
      Nat. Genet. 3
      New Phytol. 3
      Nucleic Acids Res. 3
      Plant Cell 3
      Plant Physiol. Biochem. 3
      Pol. J. Chem. 3
      Proc. Natl. Acad. Sci. U.S.A. 3
      QSAR Comb. Sci. 3
      Synthesis 3
      Tetrahedron 3
      Tetrahedron Lett. 3
      Tetrahedron: Asymmetry 3
      Vorträge für Pflanzenzüchtung 3
      Lecture Notes in Computer Science 2
      Annu. Plant Rev. 1
      Biotechnology in Agriculture and Forestry 1
      Reviews and Accounts on Heterocyclic Chemistry 1
      Top. Curr. Genet. 1
  • Author Sorted by frequency and by alphabetical order
    • Hause, B. 6
      Brabant, A. 3
      Dräger, B. 3
      Frenzel, A. 3
      Kaiser, H. 3
      Keiner, R. 3
      Krajinski, F. 3
      Richter, U. 3
      Tiller, N. 3
  • Year
  • Type of publication
Search narrowed by: Year: 2006 Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Planta Remove all filters
Displaying results 1 to 6 of 6.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1

Publications

Kaiser, H.; Richter, U.; Keiner, R.; Brabant, A.; Hause, B.; Dräger, B.; Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts Planta 225 127-137 (2006) DOI: 10.1007/s00425-006-0335-8
  • Abstract
  • BibText
  • RIS

Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.

Publications

Frenzel, A.; Tiller, N.; Hause, B.; Krajinski, F.; The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites Planta 224 792-800 (2006) DOI: 10.1007/s00425-006-0262-8
  • Abstract
  • BibText
  • RIS

In Medicago truncatula a family of mycorrhiza-specific expressed lectins has been identified recently, but the function and regulation of these lectins during the arbuscular mycorrhiza symbiosis are still unknown. In order to characterize a first member of this protein family, MtLec5 was analyzed concerning its localization and regulation. Confocal laser scanning microscopy showed that MtLec5 is a secretory protein indicating a role as a vegetative storage protein, which is specifically expressed in mycorrhizal root systems. To study the molecular mechanisms leading to the mycorrhiza-specific transcription, deletion studies of pMtLec5 were done using reporter gene fusions. Potential cis-acting elements could be narrowed down to a 150 bp fragment that was located approximately at −300/−150 according to the transcription start, suggesting the binding of positive regulators to this area. Similar expression pattern of the reporter gene was found after transforming roots of the non-legume Nicotiana tabacum with the heterologous promoter–reporter fusions. This indicated that the observed mycorrhiza-specific transcriptional induction is not legume-specific. Electrophoretic mobility shift assays showed that several factors which were exclusively present in mycorrhizal roots bind within the 150 bp promoter area. This strengthens the hypothesis of positive regulators mediating the AM-specific gene expression.

Publications

Frenzel, A.; Tiller, N.; Hause, B.; Krajinski, F.; The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites Planta 224 792-800 (2006) DOI: 10.1007/s00425-006-0262-8
  • Abstract
  • BibText
  • RIS

In Medicago truncatula a family of mycorrhiza-specific expressed lectins has been identified recently, but the function and regulation of these lectins during the arbuscular mycorrhiza symbiosis are still unknown. In order to characterize a first member of this protein family, MtLec5 was analyzed concerning its localization and regulation. Confocal laser scanning microscopy showed that MtLec5 is a secretory protein indicating a role as a vegetative storage protein, which is specifically expressed in mycorrhizal root systems. To study the molecular mechanisms leading to the mycorrhiza-specific transcription, deletion studies of pMtLec5 were done using reporter gene fusions. Potential cis-acting elements could be narrowed down to a 150 bp fragment that was located approximately at −300/−150 according to the transcription start, suggesting the binding of positive regulators to this area. Similar expression pattern of the reporter gene was found after transforming roots of the non-legume Nicotiana tabacum with the heterologous promoter–reporter fusions. This indicated that the observed mycorrhiza-specific transcriptional induction is not legume-specific. Electrophoretic mobility shift assays showed that several factors which were exclusively present in mycorrhizal roots bind within the 150 bp promoter area. This strengthens the hypothesis of positive regulators mediating the AM-specific gene expression.

Publications

Kaiser, H.; Richter, U.; Keiner, R.; Brabant, A.; Hause, B.; Dräger, B.; Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts Planta 225 127-137 (2006) DOI: 10.1007/s00425-006-0335-8
  • Abstract
  • BibText
  • RIS

Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.

Publications

Kaiser, H.; Richter, U.; Keiner, R.; Brabant, A.; Hause, B.; Dräger, B.; Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts Planta 225 127-137 (2006) DOI: 10.1007/s00425-006-0335-8
  • Abstract
  • BibText
  • RIS

Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.

Publications

Frenzel, A.; Tiller, N.; Hause, B.; Krajinski, F.; The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites Planta 224 792-800 (2006) DOI: 10.1007/s00425-006-0262-8
  • Abstract
  • BibText
  • RIS

In Medicago truncatula a family of mycorrhiza-specific expressed lectins has been identified recently, but the function and regulation of these lectins during the arbuscular mycorrhiza symbiosis are still unknown. In order to characterize a first member of this protein family, MtLec5 was analyzed concerning its localization and regulation. Confocal laser scanning microscopy showed that MtLec5 is a secretory protein indicating a role as a vegetative storage protein, which is specifically expressed in mycorrhizal root systems. To study the molecular mechanisms leading to the mycorrhiza-specific transcription, deletion studies of pMtLec5 were done using reporter gene fusions. Potential cis-acting elements could be narrowed down to a 150 bp fragment that was located approximately at −300/−150 according to the transcription start, suggesting the binding of positive regulators to this area. Similar expression pattern of the reporter gene was found after transforming roots of the non-legume Nicotiana tabacum with the heterologous promoter–reporter fusions. This indicated that the observed mycorrhiza-specific transcriptional induction is not legume-specific. Electrophoretic mobility shift assays showed that several factors which were exclusively present in mycorrhizal roots bind within the 150 bp promoter area. This strengthens the hypothesis of positive regulators mediating the AM-specific gene expression.

  • 1

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail