logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 230
      Preprints 15
      Books and chapters 8
  • Year
    • 1989 4
      1990 6
      1991 3
      1992 9
      1993 18
      1994 30
      1995 53
      1996 74
      1997 150
      1998 120
      1999 149
      2000 153
      2001 140
      2002 206
      2003 195
      2004 201
      2005 240
      2006 252
      2007 270
      2008 261
      2009 224
      2010 216
      2011 197
      2012 303
      2013 200
      2014 231
      2015 231
      2016 244
      2017 182
      2018 136
      2019 167
      2020 124
      2021 109
      2022 113
      2023 103
      2024 98
      2025 62
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry 35
      FEBS Lett. 15
      Plant Physiol. 10
      Planta 9
      bioRxiv 9
      Bot. Acta 6
      J. Biol. Chem. 6
      J. Prakt. Chem. 6
      Magn. Reson. Chem. 6
      Proc. Natl. Acad. Sci. U.S.A. 6
      Tetrahedron 6
      Tetrahedron Lett. 6
      0 5
      Int. J. Mol. Sci. 5
      Angew. Chem. Int. Ed. 4
      Front. Plant Sci. 4
      Acta Chem. Scand. 3
      Anal. Biochem. 3
      Angew. Chem. 3
      BIOspektrum 3
      Biomolecules 3
      ChemRxiv 3
      Chromatographia 3
      J. Plant Physiol. 3
      Pharmazie 3
      Plant Cell 3
      Plant Cell Physiol. 3
      Plant Cell Tiss. Organ Cult. 3
      Plant J. 3
      Plants 3
      SSRN Electronic Journal 3
      Science 3
      Synlett 3
      Synthesis 3
      Trends Plant Sci. 3
      ChemBioChem 2
      EMBO J. 2
      Food Chem. 2
      Frontiers in Pharmacology 2
      Metabolites 2
      Molecules 2
      Nat. Prod. Res. 2
      ACS Catal. 1
      ACS Chem. Biol. 1
      Adv. Exp. Med. Biol. 1
      Agronomy 1
      Applied Microbiology and Biotechnology 1
      BMC Biol. 1
      Catal. Sci. Technol. 1
      Catalysts 1
      Chin. J. Catal. 1
      Commun. Biol. 1
      Comp Struct Biotechnol J 1
      Curr. Biol. 1
      Curr. Opin. Plant Biol. 1
      Cytoskeleton 1
      F1000Research 1
      Food Chem. Toxicol. 1
      Food Res. Int. 1
      Front. Microbiol. 1
      G3: Genes, Genomes, Genetics 1
      J. Agr. Food Chem. 1
      J. Cheminform. 1
      J. Nat. Prod. 1
      J. Proteome Res. 1
      JACS Au 1
      Journal of Clinical Medicine 1
      Journal of Industrial Microbiology and Biotechnology 1
      Macromolecular Rapid Communications 1
      Mar. Drugs 1
      Metabolomics 1
      Methods Mol. Biol. 1
      Nat. Prod. Rep. 1
      Natural Products and Bioprospecting 1
      New Phytol. 1
      PLOS Pathog. 1
      Physiol. Plant. 1
      Phytochem. Lett. 1
      Plant Biotechnol. J. 1
      Plant Signaling & Behavior 1
      Pure and Applied Chemistry 1
      RSC Adv. 1
      Sci. Adv. 1
      Sci. Rep. 1
      The Cell Surface 1
      The Plant Cytoskeleton 1
  • Author Sorted by frequency and by alphabetical order
    • Porzel, A. 46
      Wasternack, C. 44
      Hause, B. 25
      Adam, G. 24
      Strack, D. 22
      Wessjohann, L. A. 21
      Miersch, O. 20
      Wessjohann, L. 20
      Parthier, B. 18
      Feussner, I. 16
      Schmidt, J. 16
      Ziegler, J. 14
      Brandt, W. 13
      Ripperger, H. 12
      Vogt, T. 12
      Davari, M. D. 10
      Franke, K. 10
      Kühn, H. 10
      Anh, N. H. 9
      Kramell, R. 9
      Scheel, D. 9
      Bürstenbinder, K. 8
      Neumann, S. 8
      Brunoni, F. 7
      Floková, K. 7
      Mik, V. 7
      Novák, O. 7
      Strnad, M. 7
      Široká, J. 7
      Bringmann, G. 6
      Dunaeva, M. 6
      Feussner, K. 6
      Gabriel, T. 6
      Görschen, E. 6
      Löbler, M. 6
      Maier, W. 6
      Peipp, H. 6
      Peters, K. 6
      Reeh, I. 6
      Schneider, B. 6
      Schneider, G. 6
      Sung, T. V. 6
      Wild, H. 6
      Wray, V. 6
      Farag, M. A. 5
      Hussain, H. 5
      Schuster, M. 5
      Buhl, J. 4
      Dahiya, P. 4
      Dam, N. M. 4
      Grúz, J. 4
      Hamberg, M. 4
      Kaiser, M. 4
      Nožková, V. 4
      Pospíšil, T. 4
      Proksch, C. 4
      Rizzo, P. 4
      Schwaneberg, U. 4
      Stamm, G. 4
      Thieme, D. 4
      Tissier, A. 4
      Wirthmueller, L. 4
      van der Hoorn, R. A. L. 4
      Ament, A. 3
      Ansorge, S. 3
      Armas-Egas, L. 3
      Balkenhohl, T. J. 3
      Baumert, A. 3
      Beale, M. H. 3
      Bruhn, C. 3
      Buske, A. 3
      Colby, T. 3
      Colling, C. 3
      Dammann, U. 3
      Diettrich, B. 3
      Drosihn, S. 3
      D’Auria, J. 3
      Eisele, S. 3
      Ethur, E. M. 3
      Faust, J. 3
      Fernández-Niño, M. 3
      Frachisse, J.-M. 3
      Frank, R. 3
      Fritz, I. G. 3
      Fuchs, J. 3
      Fuchs, P. 3
      Gaskin, P. 3
      God, R. 3
      Grimm, R. 3
      Guern, J. 3
      Hahlbrock, K. 3
      Haluška, S. 3
      Hammer, K. 3
      Hedrich, R. 3
      Hertel, S. C. 3
      Hirt, H. 3
      Hoffmann, T. 3
      Holzgrabe, U. 3
      Htitich, M. 3
      Jabs, T. 3
  • Year
  • Type of publication
Search narrowed by: Year: 1997 Year: 2023 Remove all filters
Displaying results 1 to 10 of 253.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • ....

Preprints

Schuster, M.; Eisele, S.; Armas-Egas, L.; Kessenbrock, T.; Kourelis, J.; Kaiser, M.; van der Hoorn, R. A. L.; Enhanced late blight resistance by engineering an EpiC2B-insensitive immune protease bioRxiv (2023) DOI: 10.1101/2023.05.29.541874
  • Abstract
  • Internet
  • BibText
  • RIS

Crop protection strategies relying on the improvement of the natural plant immune system via genetic engineering are sustainable solutions against the pathogen thread on food security. Here we describe a novel way to improve the plant immune system by immune protease engineering. As proof of concept, we increased resistance against the late blight pathogen Phytopththora infestans by rendering the tomato secreted immune protease Pip1 insensitive to the P. infestans-secreted inhibitor Epic2B. This concept can be applied to secreted immune proteases in crops by precision breeding.

Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4
  • Abstract
  • Internet
  • BibText
  • RIS

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.

Preprints

Kaur, S.; Colby, T.; Thieme, D.; Proksch, C.; Matschi, S.; Matić, I.; Wirthmueller, L.; Untargeted proteomics identifies plant substrates of the bacterial-derived ADP-ribosyltransferase AvrRpm1 bioRxiv (2023) DOI: 10.1101/2023.09.25.558804
  • Abstract
  • Internet
  • BibText
  • RIS

One class of enzymes that plant pathogens employ to manipulate innate immunity and physiology of the infected cells are host-targeted ADP-ribosyltransferases. The bacterial pathogen Pseudomonas syringae uses its type III secretion system to inject several effector proteins with ADP-ribosyltransferase activity into plant cells. One of them, AvrRpm1, ADP-ribosylates the plasma membrane-associated RPM1-INTERACTING PROTEIN 4 (RIN4) in Glycine max and Arabidopsis thaliana to attenuate targeted secretion of defense-promoting compounds. Substrate identification of host-targeted ADP-ribosyltransferases is complicated by the biochemical lability of the protein modification during plant protein extraction and in several cases required prior knowledge on plant immune signaling pathways that are impaired by the ADP-ribosylating type III effector. Using the AvrRpm1-RIN4 pair as a proof-of-concept, we present an untargeted proteomics workflow for enrichment and detection of ADP-ribosylated proteins and peptides from plant cell extracts that in several cases provides site-resolution for the modification.

Preprints

Dahiya, P.; Haluška, S.; Buhl, J.; Kölling, M.; Papsdorf, S.; Zehnich, D.; Machalett, K.; Pfeiffer, P.; Stamm, G.; Potocký, M.; Bürstenbinder, K.; Origin and evolution of IQD scaffolds and assembled protein complexes in plant cell division SSRN Electronic Journal (2023) DOI: 10.2139/ssrn.4655235
  • Abstract
  • Internet
  • BibText
  • RIS

In ancestors of modern-day streptophyte algae, cell division has undergone a switch from a cleavage-like mode to an inside-out mechanism, in which new cell walls are inserted at the cell center and expand centrifugally, eventually fusing with the maternal cell wall at a specific cortical region, termed cortical division zone (CDZ) 1-3. This switch in cell division involved the stepwise evolution of two novel cytoskeleton arrays, the phragmoplast and preprophase band (PPB). The PPB/phragmoplast system possibly provided basis for tunable cell division orientation, which enabled 3D development and morphological adaptations required for successful colonization of terrestrial habitats4. How the cytoskeleton acquired its novel functions, however, is still largely enigmatic. Our previous work identified IQ67-DOMAIN8 (IQD8) of Arabidopsis thaliana as an important determinant of PPB formation and division plane positioning5,6. IQD8 is an intrinsically disordered scaffold protein that interacts with core components of the CDZ7. Here, through phylogenetic and functional analyses, we show that IQDs emerged in the last common ancestor of Klebsormidiophyceae and Phragmoplastophyta algae. Gradual changes in motif composition and acquisition likely facilitated functional diversification of IQDs in terms of subcellular localization and protein-protein interactions. Cross-complementation studies in Arabidopsis mutants provide evidence for evolutionarily conserved functions of land-plant IQDs as key regulators of PPB formation and division plane control. In summary, our work establishes IQDs as plant-specific scaffold proteins, which likely played a role in rewiring and neofunctionalization of protein-protein interaction networks at distinct subcellular sites to facilitate evolutionary adaptations of the cell division apparatus and microtubule cytoskeleton in general.

Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses bioRxiv (2023) DOI: 10.1101/2023.07.18.549545
  • Abstract
  • Internet
  • BibText
  • RIS

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.

Preprints

Schuster, M.; Eisele, S.; Armas-Egas, L.; Kessenbrock, T.; Kourelis, J.; Kaiser, M.; van der Hoorn, R. A. L.; Enhanced late blight resistance by engineering an EpiC2B-insensitive immune protease bioRxiv (2023) DOI: 10.1101/2023.05.29.541874
  • Abstract
  • Internet
  • BibText
  • RIS

Crop protection strategies relying on the improvement of the natural plant immune system via genetic engineering are sustainable solutions against the pathogen thread on food security. Here we describe a novel way to improve the plant immune system by immune protease engineering. As proof of concept, we increased resistance against the late blight pathogen Phytopththora infestans by rendering the tomato secreted immune protease Pip1 insensitive to the P. infestans-secreted inhibitor Epic2B. This concept can be applied to secreted immune proteases in crops by precision breeding.

Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4
  • Abstract
  • Internet
  • BibText
  • RIS

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.

Preprints

Kaur, S.; Colby, T.; Thieme, D.; Proksch, C.; Matschi, S.; Matić, I.; Wirthmueller, L.; Untargeted proteomics identifies plant substrates of the bacterial-derived ADP-ribosyltransferase AvrRpm1 bioRxiv (2023) DOI: 10.1101/2023.09.25.558804
  • Abstract
  • Internet
  • BibText
  • RIS

One class of enzymes that plant pathogens employ to manipulate innate immunity and physiology of the infected cells are host-targeted ADP-ribosyltransferases. The bacterial pathogen Pseudomonas syringae uses its type III secretion system to inject several effector proteins with ADP-ribosyltransferase activity into plant cells. One of them, AvrRpm1, ADP-ribosylates the plasma membrane-associated RPM1-INTERACTING PROTEIN 4 (RIN4) in Glycine max and Arabidopsis thaliana to attenuate targeted secretion of defense-promoting compounds. Substrate identification of host-targeted ADP-ribosyltransferases is complicated by the biochemical lability of the protein modification during plant protein extraction and in several cases required prior knowledge on plant immune signaling pathways that are impaired by the ADP-ribosylating type III effector. Using the AvrRpm1-RIN4 pair as a proof-of-concept, we present an untargeted proteomics workflow for enrichment and detection of ADP-ribosylated proteins and peptides from plant cell extracts that in several cases provides site-resolution for the modification.

Preprints

Dahiya, P.; Haluška, S.; Buhl, J.; Kölling, M.; Papsdorf, S.; Zehnich, D.; Machalett, K.; Pfeiffer, P.; Stamm, G.; Potocký, M.; Bürstenbinder, K.; Origin and evolution of IQD scaffolds and assembled protein complexes in plant cell division SSRN Electronic Journal (2023) DOI: 10.2139/ssrn.4655235
  • Abstract
  • Internet
  • BibText
  • RIS

In ancestors of modern-day streptophyte algae, cell division has undergone a switch from a cleavage-like mode to an inside-out mechanism, in which new cell walls are inserted at the cell center and expand centrifugally, eventually fusing with the maternal cell wall at a specific cortical region, termed cortical division zone (CDZ) 1-3. This switch in cell division involved the stepwise evolution of two novel cytoskeleton arrays, the phragmoplast and preprophase band (PPB). The PPB/phragmoplast system possibly provided basis for tunable cell division orientation, which enabled 3D development and morphological adaptations required for successful colonization of terrestrial habitats4. How the cytoskeleton acquired its novel functions, however, is still largely enigmatic. Our previous work identified IQ67-DOMAIN8 (IQD8) of Arabidopsis thaliana as an important determinant of PPB formation and division plane positioning5,6. IQD8 is an intrinsically disordered scaffold protein that interacts with core components of the CDZ7. Here, through phylogenetic and functional analyses, we show that IQDs emerged in the last common ancestor of Klebsormidiophyceae and Phragmoplastophyta algae. Gradual changes in motif composition and acquisition likely facilitated functional diversification of IQDs in terms of subcellular localization and protein-protein interactions. Cross-complementation studies in Arabidopsis mutants provide evidence for evolutionarily conserved functions of land-plant IQDs as key regulators of PPB formation and division plane control. In summary, our work establishes IQDs as plant-specific scaffold proteins, which likely played a role in rewiring and neofunctionalization of protein-protein interaction networks at distinct subcellular sites to facilitate evolutionary adaptations of the cell division apparatus and microtubule cytoskeleton in general.

Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses bioRxiv (2023) DOI: 10.1101/2023.07.18.549545
  • Abstract
  • Internet
  • BibText
  • RIS

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • ....

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail