- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Books and chapters
Books and chapters
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Books and chapters
In plants, the oxylipin pathway gives rise to several oxygenated fatty acid derivatives such as hydroxy- and keto fatty acids as well as volatile aldehydes and cyclic compounds, which are, in part, physiologically active [1]. Among these, jasmonic acid is discussed as signalling molecule during several stress responses, wounding, senescense and plant pathogen interactions [2].
Books and chapters
The etiolated germination process of oilseed plants is characterized by the mobilization of storage lipids which serve as a major carbon source for the seedlings growth. During this stage the lipid storing organelles, the lipid bodies, are degraded and a new set of proteins, including a specific form of lipoxygenase (LOX), is detectable at their membranes in different plants [1,2]. LOXs are widely distributed in plants and animals and catalyze the regio- and stereo-specific oxygenation of polyunsaturated fatty acids [3]. The enzymatic transformations of the resulting fatty acid hydroperoxides have been extensively studied [4]. Three well characterized enzymes, a lyase, an allene oxide synthase, and a peroxygenase, were shown to degrade hydroperoxides into compounds of physiological importance, such as odors, oxylipins, and jasmonates. We have recently reported a new LOX reaction in plants where a specific LOX, the lipid body LOX, metabolizes esterified fatty acids. This reaction resulted in the formation of 13(S)-hydroxy-linoleic acid (13-HODE) and lead us to propose an additional branch of the LOX pathway: the reductase pathway. Besides a specific LOX form we suggest two additional enzyme activities, a lipid hydroperoxide reductase and a lipid hydroxide-specific lipase which lead to the formation of 13-HODE. 13-HODE might be the endogenous substrate for β-oxidation in the glyoxysomes during germination of oilseeds containing high amounts of polyunsaturated fatty acids.