- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Cell suspension cultures of Ruta graveolens L. produce a variety of acridone alkaloids, and the accumulation can be stimulated by the addition of fungal elicitors. Acridone synthase, the enzyme catalyzing the synthesis of 1,3-dihydroxy-N-methylacridone from N-methylanthraniloyl-CoA and malonyl-CoA, had been isolated from these cells, and the partial enzyme polypeptide sequence, elucidated from six tryptic fragments, revealed homology to heterologous chalcone synthases. Poly(A)+ RNA was isolated from Ruta cells that had been treated for 6 h with a crude cell wall elicitor from Phytophthora megasperma f. sp. glycinea, and a cDNA library was constructed in λ2AP. Clones harboring acridone synthase cDNA were isolated from the library by screening with a synthetic oligonucleotide probe complementary to a short stretch of sequence of the enzyme peptide with negligible homology to chalcone synthases. The identity of the clones was substantiated by DNA sequencing and by recognition of five additional peptides, determined previously from tryptic acridone synthase digests, in the translated sequence. An insert of roughly 1.4 kb encoded the complete acridone synthase, and alignments at both DNA and protein levels corroborated the high degree of homology to chalcone synthases. Expression of the enzyme in vector pET-11c in the Escherichia coli pLysS host strain proved the identity of the cloned cDNA. The heterologous enzyme in the crude E. coli extract exhibited high acridone but no chalcone synthase activity. The results were fully supported by northern blot hybridizations which revealed that the specific transcript abundance did not increase but rather decreased upon white light irradiation of cultured Ruta graveolens L. cells, a condition that commonly induces the abundance of chalcone synthase transcripts.