- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Publications
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publications
Recognition of pathogen-associated molecular patterns (PAMPs) induces multiple defense mechanisms to limit pathogen growth. Here, we show that the Arabidopsis thaliana tandem zinc finger protein 9 (TZF9) is phosphorylated by PAMP-responsive mitogen-activated protein kinases (MAPKs) and is required to trigger a full PAMP-triggered immune response. Analysis of a tzf9 mutant revealed attenuation in specific PAMP-triggered reactions such as reactive oxygen species accumulation, MAPK activation and, partially, the expression of several PAMP-responsive genes. In accordance with these weaker PAMP-triggered responses, tzf9 mutant plants exhibit enhanced susceptibility to virulent Pseudomonas syringae pv. tomato DC3000. Visualization of TZF9 localization by fusion to green fluorescent protein revealed cytoplasmic foci that co-localize with marker proteins of processing bodies (P-bodies). This localization pattern is affected by inhibitor treatments that limit mRNA availability (such as cycloheximide or actinomycin D) or block nuclear export (leptomycin B). Coupled with its ability to bind the ribohomopolymers poly(rU) and poly(rG), these results suggest involvement of TZF9 in post-transcriptional regulation, such as mRNA processing or storage pathways, to regulate plant innate immunity.
Publications
Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas–liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.
Publications
Nicotiana tabacum (tobacco) plants have short and long glandular trichomes. There is evidence that tobacco trichomes play several roles in the defense against biotic and abiotic stresses. cDNA libraries were constructed from control and cadmium (Cd)-treated leaf trichomes. Almost 2,000 expressed sequence tag (EST) cDNA clones were sequenced to analyze gene expression in control and Cd-treated leaf trichomes. Genes for stress response as well as for primary metabolism scored highly, indicating that the trichome is a biologically active and stress-responsive tissue. Reverse transcription–PCR (RT–PCR) analysis demonstrated that antipathogenic T-phylloplanin-like proteins, glutathione peroxidase and several classes of pathogenesis-related (PR) proteins were expressed specifically or dominantly in trichomes. Cysteine-rich PR proteins, such as non-specific lipid transfer proteins (nsLTPs) and metallocarboxypeptidase inhibitors, are candidates for the sequestration of metals. The expression of osmotin and thaumatin-like proteins was induced by Cd treatment in both leaves and trichomes. Confocal laser scanning microscopy (CLSM) showed that glutathione levels in tip cells of both long and short trichomes were higher than those in other types of leaf cells, indicating the presence of an active sulfur-dependent protective system in trichomes. Our results revealed that the trichome-specific transcriptome approach is a powerful tool to investigate the defensive functions of trichomes against both abiotic and biotic stress. Trichomes are shown to be an enriched source of useful genes for molecular breeding towards stress-tolerant plants.
Publications
The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publications
Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.
Publications
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
Publications
Sorghum SbSTS1 was the first example of a stilbene synthase gene in monocots. Previously, we demonstrated that the gene was involved in defense responses. To examine its biochemical function in planta, SbSTS1 was overexpressed in transgenic Arabidopsis. Metabolite analysis revealed that cis -resveratrol glucoside (piceid) accumulated as the major stilbene in the transgenic lines. Using liquid chromatography–tandem mass spectrometry (LC–MS/MS) in selected reaction monitoring mode, up to 580 μg g −1 FW of cis -piceid were detected in 2-week-old plants, which represent a convenient source of the cis -isomers for pharmacological investigations. Our results also suggested the presence of unknown stilbene isomerase activities in Arabidopsis.
Publications
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its stereoisomeric precursor, cis-(+)-12-oxophytodienoic acid (OPDA), which is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). A cDNA of AOC was isolated from Humulus lupulus var. Nugget. The ORF of 765 bp encodes a 255 amino acid protein, which carries a putative chloroplast targeting sequence. The recombinant protein without its putative chloroplast target sequence showed significant AOC activity. Previously we demonstrated that wounding induces organogenic nodule formation in hop. Here we show that the AOC transcript level increases in response to wounding of internodes, peaking between 2 and 4 h after wounding. In addition, Western blot analysis showed elevated levels of AOC peaking 24 h after internode inoculation. The AOC increase was accompanied by increased JA levels 24 h after wounding, whereas OPDA had already reached its highest level after 12 h. AOC is mostly present in the vascular bundles of inoculated internodes. During prenodule and nodule formation, AOC levels were still high. JA and OPDA levels decreased down to 10 and 118 pmol (g FW)–1, respectively, during nodule formation, but increased during plantlet regeneration. Double immunolocalization analysis of AOC and Rubisco in connection with lugol staining showed that AOC is present in amyloplasts of prenodular cells and in the chloroplasts of vacuolated nodular cells, whereas meristematic cells accumulated little AOC. These data suggest a role of AOC and jasmonates in organogenic nodule formation and plantlet regeneration from these nodules.