- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Purification through repeated column chromatography over silica gel and Sephadex LH-20 of the ethanol extract of the stems of Cissus aralioides (Baker) Planch. resulted in the isolation of a new ceramide, aralioidamide A (1) along with five known compounds (2-6). Their structures were determined by the extensive analysis of their spectroscopic (1D and 2D NMR) and spectrometric data, and comparison with those reported in the literature. Aralioidamide A (1) displayed weak antibacterial activity (MIC = 256 μg/mL) against Bacillus subtilis, Staphylococcus aureus and Shigella flexneri and was inactive (MIC > 256 μg/mL) against the tested fungi.
Publications
Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) in their pygidial glands to protect themselves from predation and microorganismic infestation.The biosynthesis of stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine (5) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides. The three metabolites follow the same biosynthetic pathway, where the N‐heterocyclic ring is derived from L‐lysine and the side chain from L‐isoleucine. The different alkaloids are finally obtained by few modifications of shared precursor molecules, such as 2,3,4,5‐tetrahydro‐5‐(2‐methylbutylidene)pyridine (1). This piperideine alkaloid was synthesized and detected by GC/MS and GC at a chiral phase in the pygidial glands of Stenus similis, Stenus tarsalis, and Stenus cicindeloides.
Publications
Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc‐zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity‐guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5‐dihydroxy‐4‐methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5–9 mg/ml), with 3,5‐dihydroxy‐4‐methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure–activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.
Publications
Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas–liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.
Publications
Two new N ‐glucosylated indole alkaloids were isolated from fruiting bodies of the basidiomycete Cortinarius brunneus (Pers .) Fr . The structures were elucidated by means of the spectroscopic data. Additionally, the very recently reported compounds N‐ 1‐β‐ glucopyranosyl‐3‐(carboxymethyl)‐1H ‐indole (3 ) and N‐ 1‐β‐ glucopyranosyl‐3‐(2‐methoxy‐2‐oxoethyl)‐1H ‐indole (4 ) could be detected. Compound 3 is the N ‐glucoside of the plant‐growth regulator 1H ‐indole‐3‐acetic acid (IAA), but, in contrast, it does not exhibit auxin‐like activity in an Arabidopsis thaliana tap root elongation assay.
Publications
A short survey of historic and current methods for the synthesis of selenocysteine, selenocystine, and derivatives and related compounds is presented, with an additional emphasis on the formation of selenocysteine‐derived SeS bridges. The majority of methods to the amino acid starts with protected and O ‐activated serine, but also other concepts are included such as radical or multicomponent strategies, the latter allowing also direct access to peptoids in one pot. Of special importance is the monomeric oxidative cyclization of selenocysteine–cysteine peptides to eight‐membered and larger rings with a selenenylsulfide bridge, a crucial element in several selenoproteins.
Publications
4-Hydroxybenzoate oligoprenyltransferase of E. coli, encoded in the gene ubiA, is an important key enzyme in the biosynthetic pathway to ubiquinone. It catalyzes the prenylation of 4-hydroxybenzoic acid in position 3 using an oligoprenyl diphosphate as a second substrate. Up to now, no X-ray structure of this oligoprenyltransferase or any structurally related enzyme is known. Knowledge of the tertiary structure and possible active sites is, however, essential for understanding the catalysis mechanism and the substrate specificity.With homology modeling techniques, secondary structure prediction tools, molecular dynamics simulations, and energy optimizations, a model with two putative active sites could be created and refined. One active site selected to be the most likely one for the docking of oligoprenyl diphosphate and 4-hydroxybenzoic acid is located near the N-terminus of the enzyme. It is widely accepted that residues forming an active site are usually evolutionary conserved within a family of enzymes. Multiple alignments of a multitude of related proteins clearly showed 100% conservation of the amino acid residues that form the first putative active site and therefore strongly support this hypothesis. However, an additional highly conserved region in the amino acid sequence of the ubiA enzyme could be detected, which also can be considered a putative (or rudimentary) active site. This site is characterized by a high sequence similarity to the aforementioned site and may give some hints regarding the evolutionary origin of the ubiA enzyme.Semiempirical quantum mechanical PM3 calculations have been performed to investigate the thermodynamics and kinetics of the catalysis mechanism. These results suggest a near SN1 mechanism for the cleavage of the diphosphate ion from the isoprenyl unit. The 4-hydroxybenzoic acid interestingly appears not to be activated as benzoate anion but rather as phenolate anion to allow attack of the isoprenyl cation to the phenolate, which appeared to be the rate limiting step of the whole process according to our quantum chemical calculations. Our models are a basis for developing inhibitors of this enzyme, which is crucial for bacterial aerobic metabolism.
Publications
New, partially acetylated dihydroxy fatty acids could be identified in the floral oil of Malpighia coccigera (Malpighiaceae): 7‐OAc,3‐OH 20 : 0, 7‐OAc,3‐OH 22 : 0, 9‐OAc,3‐OH 22 : 0, 9‐OAc,5‐OH 22 : 0, 3,9‐diOAc 22 : 0, 9‐OAc,3‐OH 24 : 0 , and 11‐OAc,5‐OH 24 : 0 . The substitution patterns of all hitherto undescribed dihydroxylated and additionally identified monohydroxylated fatty acids are in agreement with a polyketide analogous biosynthesis. Intermediates may be 3‐acetoxy fatty acids (C16, C18, and C20), known from flower secretions of other phylogenetically unrelated plant families. A possible relationship between plant epicuticular wax and floral oil biosynthesis is discussed. It may explain why an independent but convergent development of oil flowers and flower oils in unrelated plant families was possible.
Publications
Brassinosteroids are a class of steroidal phytohormones with high growth-promoting properties. The preferred side-chain conformations of 10 brassinosteroids were determined by means of detailed NMR investigations and molecular-modeling studies. Vacuum conformations obtained by simulated annealing calculations and Boltzmann statistical analysis were compared with solution conformations derived from NOE experiments and molecular dynamic simulations, and with X-ray structures. In general, results from simulated annealing calculations and NMR-supported molecular dynamics simulations are in good agreement. For some of the compounds investigated the conformation was less well-defined at the end of the side-chain. It could be shown that the energetically most favorable and most probable conformations also include the conformations obtained by NMR supported molecular-dynamics calculations and by X-ray analysis. For the most bioactive compound brassinolide (1) the majority of conformations show a side-chain bent towards the β-face of the steroid skeleton, whereas for the less bioactive brassinosteroids, conformations with straight side-chains or side-chains bent towards the α-face are more frequent.
Publications
Cathepsin H is involved in intracellular protein degradation and is implicated in a variety of physiological processes such as proenzyme activation, enzyme inactivation, hormone maturation, tissue remodeling, and bone matrix resorption. A model of the tertiary structure of the human lysosomal cysteine protease cathepsin H was constructed. The protein structure was built from its amino acid sequence and its homology to papain, actinidin, and cathepsin L for which crystallographic co-ordinates are available. The model was generated using the COMPOSER module of SYBYL.The position and interaction behavior of the so called mini-chain, the octapeptide EPQNCSAT, to the active-site cleft of cathepsin H could be determined by docking studies. Refinement was achieved through interactive visual and algorithmic analysis and minimization with the TRIPOS force field. The model was found to correlate with observed empirical data regarding ligand specificity. The model defines possible steric, hydrophobic, and electrostatic interactions. We anticipate that the model will serve as a tool to understand substrate specificity and may be used for the development of new specific ligands.