- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
BackgroundMolecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method where annotations of m/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of the CASMI 2016 contest.ResultsThe results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21 and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016 contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which submitted results for this type of spectra.ConclusionsThis study shows how statistical learning can improve molecular structure identification based on MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows especially in negative mode a better performance compared to the other participating approaches.
Publications
BackgroundTranscriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic approaches based on sequences from only one species that typically take into account intra-motif dependencies. It has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously.ResultsHere, we present an approach for de-novo motif discovery that combines phylogenetic footprinting with motif models capable of taking into account intra-motif dependencies. We study the degree of intra-motif dependencies inferred by this approach from ChIP-seq data of 35 transcription factors. We find that significant intra-motif dependencies of orders 1 and 2 are present in all 35 datasets and that intra-motif dependencies of order 2 are typically stronger than those of order 1. We also find that the presented approach improves the classification performance of phylogenetic footprinting in all 35 datasets and that incorporating intra-motif dependencies of order 2 yields a higher classification performance than incorporating such dependencies of only order 1.ConclusionCombining phylogenetic footprinting with motif models incorporating intra-motif dependencies leads to an improved performance in the classification of transcription factor binding sites. This may advance our understanding of transcriptional gene regulation and its evolution.
Publications
A series of 2-(acetamide-2-yl)-imidazolines (II) with 5 points of diversity were prepared by an Ugi-4CR–Staudinger–aza-Wittig-sequence starting from simple azidoalkylamines. The intramolecular aza-Wittig cyclization between the iminophosphane and the tertiary amide of the Ugi product (I) was effected by short microwave irradiation. Competitive cyclization to the secondary amide was not relevant, however, in some cases subsequent formation of the bicyclic ortho-amidines (III) was observed.
Publications
BackgroundFor three decades, sequence logos are the de facto standard for the visualization of sequence motifs in biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and more important to perceive differences between motifs. However, motif differences are hard to detect from individual sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different transcription factors, or multiple motifs for one protein domain.ResultsHere, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains from three different families as example for comparison of protein motifs.ConclusionsDiffLogo provides an intuitive visualization of motif differences. It enables the illustration and investigation of differences between highly similar motifs such as binding patterns of transcription factors for different cell types, treatments, and algorithmic approaches.
Publications
BackgroundOntology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis.ResultsWe describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology.ConclusionsBiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.
Publications
BackgroundUntargeted metabolomics generates a huge amount of data. Software packages for automated data processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several parameter optimization approaches have already been proposed, but a software package for parameter optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing.ResultsWe implemented the software package IPO (‘Isotopologue Parameter Optimization’) which is fast and free of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid chromatography - high resolution mass spectrometry and data from different instruments.IPO optimizes XCMS peak picking parameters by using natural, stable 13C isotopic peaks to calculate a peak picking score. Retention time correction is optimized by minimizing relative retention time differences within peak groups. Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third.ConclusionsIPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass spectrometry from three studies with different sample types and different chromatographic methods and devices. We were also able to show the potential of IPO to increase the reliability of metabolomics data.The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://github.com/glibiseller/IPO. The training sets and test sets can be downloaded from https://health.joanneum.at/IPO.
Publications
BackgroundThe ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing I nvestigations, S tudies and A ssays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment.ResultsThe Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data.ConclusionsThe Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking.Software availabilityThe Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.
Publications
A one-pot procedure for the phosphorylation of alcohols provides the corresponding phosphate monoesters in improved yields. The protocol features the use of tetrabutylammonium hydrogen phosphate and trichloroacetonitrile, followed by purification of the crude product by flash chromatography on silica gel. The final step, cation exchange chromatography, affords the organophosphates as ammonium salts that are usually required for biochemical applications. The mechanism appears to be phosphate rather than alcohol activation by trichloroacetonitrile.
Publications
The synthesis and applications of 4-isocyanopermethylbutane-1,1,3-triol (IPB) as a new convertible isonitrile (isocyanide) for isocyanide-based multicomponent reactions (IMCRs) like Ugi, Ugi-Smiles, and Passerini reactions are described. The primary products obtained from these IMCRs can be converted into highly activated N-acylpyrroles, which upon treatment with nucleophiles can be transformed into carboxylic acids, esters, amides, alcohols, and olefins. In this sense the reagent can be seen as a neutral carbanion equivalent to formate (HO2C−), and carboxylates or carboxamides etc. (RNu-CO−).
Publications
Indazolones are medicinally relevant targets. Herein we disclose an improved synthesis to N′-(acetamido-2-yl)-substituted indazolones with four points of diversity introduced by Ugi-[M]-amination and -amidation. The ring closure can be achieved by either conventional palladium catalysis or with a ligandless copper protocol. When α-unbranched isocyanides were employed the sole cyclization products of the copper catalyzed reactions are the hitherto undescribed 2-hydroxy-3H-3,4a,9a-triaza-fluorene-4,9-diones.