- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
BackgroundMolecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method where annotations of m/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of the CASMI 2016 contest.ResultsThe results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21 and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016 contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which submitted results for this type of spectra.ConclusionsThis study shows how statistical learning can improve molecular structure identification based on MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows especially in negative mode a better performance compared to the other participating approaches.
Publications
BackgroundTranscriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic approaches based on sequences from only one species that typically take into account intra-motif dependencies. It has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously.ResultsHere, we present an approach for de-novo motif discovery that combines phylogenetic footprinting with motif models capable of taking into account intra-motif dependencies. We study the degree of intra-motif dependencies inferred by this approach from ChIP-seq data of 35 transcription factors. We find that significant intra-motif dependencies of orders 1 and 2 are present in all 35 datasets and that intra-motif dependencies of order 2 are typically stronger than those of order 1. We also find that the presented approach improves the classification performance of phylogenetic footprinting in all 35 datasets and that incorporating intra-motif dependencies of order 2 yields a higher classification performance than incorporating such dependencies of only order 1.ConclusionCombining phylogenetic footprinting with motif models incorporating intra-motif dependencies leads to an improved performance in the classification of transcription factor binding sites. This may advance our understanding of transcriptional gene regulation and its evolution.
Publications
A first example of 5-component 5-center reactions with isonitriles [Ugi-5CRs] is described. The extended Ugi type reactions involve selenoaldehydes as well as ammonia, both challenging reactants in multicomponent (MCR) systems, to generate methionine and Se-methionine moieties and derivatives as protected building blocks or for direct ligation in peptides or peptoids. The peptoid/peptide building blocks proved to be non-cytotoxic but increased the expression of genes encoding for stress protective selenoproteins (Gpx1).
Publications
A readily available galactose oxidase (GOase) variant was used to develop a whole cell screening assay. This endpoint detection system was applied in a proof-of-concept approach by screening a focussed mutant library. This led to the discovery of the thus far most active P450 Marinobacter aquaeolei mutant catalysing the terminal hydroxylation of fatty acids.
Publications
BackgroundFor three decades, sequence logos are the de facto standard for the visualization of sequence motifs in biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and more important to perceive differences between motifs. However, motif differences are hard to detect from individual sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different transcription factors, or multiple motifs for one protein domain.ResultsHere, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains from three different families as example for comparison of protein motifs.ConclusionsDiffLogo provides an intuitive visualization of motif differences. It enables the illustration and investigation of differences between highly similar motifs such as binding patterns of transcription factors for different cell types, treatments, and algorithmic approaches.
Publications
BackgroundOntology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis.ResultsWe describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology.ConclusionsBiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.
Publications
Metal-free 1,3-dipolar cycloaddition reactions have proven to be a powerful tool for the assembly of key heterocycles, in particular diversely functionalized 1,2,3-triazoles. A number of metal-free (3+2)-cycloaddition approaches have been developed up to date with the aim to circumvent the use of metal catalysts allowing these reactions to take place in biological systems without perturbation of the naturally occurring processes. This feature article specifically provides an overview of emerging metal-free synthetic routes, and their mechanistic features, in the formation of functionalized 1,2,3-triazoles.
Publications
Correction for 'Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition' by Carolina G. S. Lima et al., Chem. Commun., 2015, 51, 10784–10796.
Publications
BackgroundUntargeted metabolomics generates a huge amount of data. Software packages for automated data processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several parameter optimization approaches have already been proposed, but a software package for parameter optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing.ResultsWe implemented the software package IPO (‘Isotopologue Parameter Optimization’) which is fast and free of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid chromatography - high resolution mass spectrometry and data from different instruments.IPO optimizes XCMS peak picking parameters by using natural, stable 13C isotopic peaks to calculate a peak picking score. Retention time correction is optimized by minimizing relative retention time differences within peak groups. Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third.ConclusionsIPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass spectrometry from three studies with different sample types and different chromatographic methods and devices. We were also able to show the potential of IPO to increase the reliability of metabolomics data.The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://github.com/glibiseller/IPO. The training sets and test sets can be downloaded from https://health.joanneum.at/IPO.
Publications
S-Adenosylmethionine (SAM) synthase was engineered for biocatalytic production of SAM and long-chain analogues by rational re-design. Substitution of two conserved isoleucine residues extended the substrate spectrum of the enzyme to artificial S-alkylhomocysteines. The variants proved to be beneficial in preparative synthesis of SAM (and analogues) due to a much reduced product inhibition.