- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
0
Publications
An integrated approach using targeted metabolite profiles and modest EST libraries each containing approximately 3500 unigenes was developed in order to discover and functionally characterize novel genes involved in plant‐specialized metabolism. EST databases have been established for benzylisoquinoline alkaloid‐producing cell cultures of Eschscholzia californica , Papaver bracteatum and Thalictrum flavum , and are a rich repository of alkaloid biosynthetic genes. ESI‐FTICR‐MS and ESI‐MS/MS analyses facilitated unambiguous identification and relative quantification of the alkaloids in each system. Manual integration of known and candidate biosynthetic genes in each EST library with benzylisoquinoline alkaloid biosynthetic networks assembled from empirical metabolite profiles allowed identification and functional characterization of four N‐ methyltransferases (NMTs). One cDNA from T. flavum encoded pavine N‐ methyltransferase (TfPavNMT), which showed a unique preference for (±)‐pavine and represents the first isolated enzyme involved in the pavine alkaloid branch pathway. Correlation of the occurrence of specific alkaloids, the complement of ESTs encoding known benzylisoquinoline alkaloid biosynthetic genes and the differential substrate range of characterized NMTs demonstrated the feasibility of bilaterally predicting enzyme function and species‐dependent specialized metabolite profiles.
Publications
ZIP transporters (ZRT, IRT‐like proteins) are involved in the transport of iron (Fe), zinc (Zn) and other divalent metal cations. The expression of IRT3, a ZIP transporter, is higher in the Zn/cadmium (Cd) hyperaccumulator Arabidopsis halleri than is that of its ortholog in Arabidopsis thaliana , which implies a positive association of its expression with Zn accumulation in A. halleri. IRT3 genes from both A. halleri and A. thaliana functionally complemented the Zn uptake mutant Spzrt1 in Schizosaccharomyces pombe ; and Zn uptake double mutant zrt1zrt2 , Fe‐uptake mutant fet3fet4 and conferred Zn and Fe uptake activity in Saccharomyces cerevisiae . By contrast, the manganese (Mn) uptake mutant smf1 phenotypes were not rescued. Insufficient Cd uptake for toxicity was found.Expression of IRT3‐green fluorescent protein (GFP) fusion proteins in Arabidopsis root protoplasts indicated localization of both IRT3 proteins in the plasma membrane.Overexpressing AtIRT3 in A. thaliana led to increased accumulation of Zn in the shoot and Fe in the root of transgenic lines. Therefore, IRT3 functions as a Zn and Fe‐uptake transporter in Arabidopsis.
Publications
Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Publications
0
Publications
Aspalathin and nothofagin are typical ingredients of unfermented rooibos (Krafczyk, N.; Glomb, M. A. J. Agric. Food Chem.2008, 56, 3368). During oxidation these dihydrochalcones were degraded to higher molecular weight browning products under aerated and nonenzymatic conditions. In the early stages of browning reactions aspalathin formed two dimers. These two compounds were unequivocally established as atropisomers stemming from oxidative A to B ring coupling. Multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC) were applied to obtain pure substances. The purity and identity of isolated dimers were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS. In parallel to the formation of chromophores during the fermentation of black tea, the formation of aspalathin dimers implies an important mechanistic channel for the generation of color during the processing of rooibos.
Publications
The androgen receptor (AR) plays a crucial role in the modulation of prostate cell proliferation and is involved in the development and progression of prostate cancer (PCa). An understanding of the complex regulation of AR provides novel treatment options for PCa. Here, we show (i) that the ubiquitin-like modifier, interferon-stimulated gene 15 (ISG15), and most enzymes involved in ISG15 conjugation were upregulated in tumor samples versus in non-malignant tissues of PCa patients and (ii) that the expression of these components significantly differed between tumors in patients treated with and without androgen ablation. Using PCa cell lines as in vitro models, the specific androgen-mediated, AR-dependent regulation of the ISGylation components was confirmed. In addition, the ISGylation system controls AR mRNA and protein expressions, as overexpression of Ube1L as a limiting ISGylation factor in the AR+ androgen-sensitive PCa cell line, LNCaP, results in significant AR upregulation, accompanied by an increased proliferation even under androgen deprivation. Accordingly, Ube1L knockdown decreased the AR expression. Thus, this study describes for the first time the modulation of AR expression by ISGylation components, which affects the proliferation of PCa cells, thereby providing evidence for a novel function of the ISGylation system in malignant transformation.
Publications
Papaver somniferum L. was transformed with an RNAi construct designed to reduce transcript levels of the gene encoding the morphine biosynthetic enzyme, salutaridinol 7-O-acetyltransferase (SalAT). RNA interference of salAT led to accumulation of the intermediate compounds, salutaridine and salutaridinol, in a ratio ranging from 2:1 to 56:1. Along the morphine biosynthetic pathway, salutaridine is stereospecifically reduced by salutaridine reductase (SalR) to salutaridinol, which is subsequently acetylated by SalAT. SalAT transcript was shown by quantitative PCR to be diminished, while salR transcript levels remained unaffected. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between SalR and SalAT, which suggested the occurrence of an enzyme complex and provided an explanation for the unexpected accumulation of salutaridine. Decreased concentrations of thebaine and codeine in latex were also observed, while the morphine levels remained constant compared to concentrations found in untransformed control plants.
Publications
The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from different legumes. On the cellular level, MtNOD25 is only transcribed in the infected cells of root nodules, and this activation is mediated by a 299-bp minimal promoter containing an organ-specific element. By expressing mGFP6 translational fusions in transgenic nodules, we show that MtNOD25 proteins are exclusively translocated to the symbiosomes of infected cells. This specific targeting only requires an N-terminal MtNOD25 SP that is highly conserved across a family of legume-specific symbiosome proteins. Our finding sheds light on one possible mechanism for the delivery of host proteins to the symbiosomes of infected root nodule cells and, in addition, defines a short molecular address label of only 24 amino acids whose N-terminal presence is sufficient to translocate proteins across the peribacteroid membrane.
Publications
Many plants are able to develop mutualistic interactions with arbuscular mycorrhizal fungi and/or nitrogen-fixing bacteria. Whereas the former is widely distributed among most of the land plants, the latter is restricted to species of ten plant families, including the legumes. The establishment of both associations is based on mutual recognition and a high degree of coordination at the morphological and physiological level. This requires the activity of a number of signals, including jasmonates. Here, recent knowledge on the putative roles of jasmonates in both mutualistic symbioses will be reviewed. Firstly, the action of jasmonates will be discussed in terms of the initial signal exchange between symbionts and in the resulting plant signaling cascade common for nodulation and mycorrhization. Secondly, the putative role of jasmonates in the autoregulation of the endosymbioses will be outlined. Finally, aspects of function of jasmonates in the fully established symbioses will be presented. Various processes will be discussed that are possibly mediated by jasmonates, including the redox status of nodules and the carbohydrate partitioning of mycorrhizal roots.