- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The functional role of isoprenoids and especially enzymatic prenylation in nature and human application is briefly covered, with the focus on bioinformatical, mechanistical and structural aspects of prenyltransferases and terpene synthases. These enzymes are as yet underrepresented but perspectively useful biocatalysts for C–C couplings of aromatic and isoprenoid substrates. Some examples of the successful use in chemoenzymatic synthesis are given including an application for the otherwise difficult synthesis of Kuhistanol A. Computational structure-based site-directed mutagenesis can be used for rational enzyme redesign to obtain altered substrate and product specificities, which is demonstrated for terpene cyclases.
Publications
The first total synthesis of tubulysin B is described. The aziridine route to tubuphenylalanine (Tup) of the tubulysin D/U-series could not be transferred to the synthesis of tubutyrosine (blue moiety). Therefore, tubutyrosine (Tut) was synthesized by a Wittig olefination/diastereoselective catalytic reduction sequence. Interestingly, the C-2 epimer of tubulysin B has a cytotoxic activity almost identical to the natural diastereomer.
Publications
The phytosterol, tocopherol, and tocotrienol profiles for mkukubuyo, Sterculia africana, manketti, Ricinodendron rautanenni, mokolwane, Hyphaene petersiana, morama, Tylosema esculentum, and moretologa‐kgomo, Ximenia caffra, seed oils from Botswana have been determined. Normal‐phase HPLC analysis of the unsaponifiable matter showed that among the selected oils, the most abundant tocopherol and tocotrienol were γ‐tocopherol (2232.99 μg/g) and γ‐tocotrienol (246.19 μg/g), detected in manketti and mkukubuyo, respectively. Mokolwane oil, however, contained the largest total tocotrienol (258.47 μg/g). Total tocol contents found in manketti, mokolwane, mkukubuyo, morama, and moretologa‐kgomo oils were 2238.60, 262.40, 246.20, 199.10, and 128.0 μg/g, respectively. GC–MS determination of the relative percentage composition of phytosterols showed 4‐desmethylsterols as the most abundant phytosterols in the oils, by occurring up to 90% in moretologa‐kgomo, mkukubuyo, and manketti seed oils, with β‐sitosterol being the most abundant. Mokolwane seed oil contained the largest percentage composition of 4,4‐dimethylsterols (45.93%). Besides 4‐desmethylsterols (75%), morama oil also contained significant amounts of 4,4‐dimethylsterols and 4‐monomethylsterols (15.72% total). GC–MS determination of the absolute amounts of 4‐desmethylsterols, after SPE fractionation of the unsaponifiable matter, confirmed that β‐sitosterol was the most abundant phytosterol in the test seed oils, with manketti seed oil being the richest source (1326.74 μg/g). The analysis showed total 4‐desmethylsterols content as 1617.41, 1291.88, 861.47, 149.15, and 109.11 μg/g for manketti, mokolwane, mkukubuyo, morama, and moretologa‐kgomo seed oils, respectively.
Publications
0
Publications
The androgen receptor (AR) plays a crucial role in the modulation of prostate cell proliferation and is involved in the development and progression of prostate cancer (PCa). An understanding of the complex regulation of AR provides novel treatment options for PCa. Here, we show (i) that the ubiquitin-like modifier, interferon-stimulated gene 15 (ISG15), and most enzymes involved in ISG15 conjugation were upregulated in tumor samples versus in non-malignant tissues of PCa patients and (ii) that the expression of these components significantly differed between tumors in patients treated with and without androgen ablation. Using PCa cell lines as in vitro models, the specific androgen-mediated, AR-dependent regulation of the ISGylation components was confirmed. In addition, the ISGylation system controls AR mRNA and protein expressions, as overexpression of Ube1L as a limiting ISGylation factor in the AR+ androgen-sensitive PCa cell line, LNCaP, results in significant AR upregulation, accompanied by an increased proliferation even under androgen deprivation. Accordingly, Ube1L knockdown decreased the AR expression. Thus, this study describes for the first time the modulation of AR expression by ISGylation components, which affects the proliferation of PCa cells, thereby providing evidence for a novel function of the ISGylation system in malignant transformation.
Publications
Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 µg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen–glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.
Publications
Infections with Phytophthora infestans, the causal agent of potato and tomato late blight disease, are difficult to control and can lead to considerable agricultural losses. Thus, the development of new effective agents against the pathogen is of great interest. In previous work, (E)-4-oxohexadec-2-enoic acid (3) was isolated from Hygrophorus eburneus, which exhibited fungicidal activity against Cladosporium cucumerinum. Here, the inhibitory effect of 3 on P. infestans spore germination and mycelium growth in vitro is demonstrated. The in vivo effect on infections of whole potato plants was investigated by spraying plants with the sodium salt of 3, sodium (2E)-4-oxohexadec-2-enoic acid (4), prior to P. infestans inoculation. Additionally, the influence of 3 on mycelium growth of Colletotrichum coccodes, the causal agent of potato black dot disease, was analyzed. In all approaches, a significant inhibition of pathogen development was achieved. Importantly, the unsaturated fatty acid exerted no toxic effect when sprayed on plants, a prerequisite for its commercial use.
Publications
The first synthesis of isochromene fused carbazols, (4aS, 13bR)-2,5,5-trimethyl-3,4,4a,5,8,13b-hexahydroisochromeno[3,4-b]carbazole (2) and its epi-isomer 3 by condensation of citral and 2-hydroxycarbazole using Ti(OEt)4 and MeAlCl2 as catalysts is described.
Publications
General thermodynamic calculations using the semiempiric PM3 method have led to the conclusion that prenyldiphosphate converting enzymes require at least one divalent metal cation for the activation and cleavage of the diphosphate–prenyl ester bond, or they must provide structural elements for the efficient stabilization of the intermediate prenyl cation. The most important common structural features, which guide the product specificity in both terpene synthases and aromatic prenyl transferases are aromatic amino acid side chains, which stabilize prenyl cations by cation–π interactions. In the case of aromatic prenyl transferases, a proton abstraction from the phenolic hydroxyl group of the second substrate will enhance the electron density in the phenolic ortho-position at which initial prenylation of the aromatic compound usually occurs.A model of the structure of the integral transmembrane-bound aromatic prenyl transferase UbiA was developed, which currently represents the first structural insight into this group of prenylating enzymes with a fold different from most other aromatic prenyl transferases. Based on this model, the structure–activity relationships and mechanistic aspects of related proteins, for example those of Lithospermum erythrorhizon or the enzyme AuaA from Stigmatella aurantiaca involved in the aurachin biosynthesis, were elucidated. The high similarity of this group of aromatic prenyltransferases to 5-epi-aristolochene synthase is an indication of an evolutionary relationship with terpene synthases (cyclases). This is further supported by the conserved DxxxD motif found in both protein families. In contrast, there is no such relationship to the aromatic prenyl transferases with an ABBA-fold, such as NphB, or to any other known family of prenyl converting enzymes. Therefore, it is possible that these two groups might have different evolutionary ancestors.