- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC–MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formation.
Publications
Acridone alkaloids formed by acridone synthase in Ruta graveolens L. are composed of N ‐methylanthraniloyl CoA and malonyl CoAs. A 1095 bp cDNA from elicited Ruta cells was expressed in Escherichia coli , and shown to encode S‐ adenosyl‐l ‐methionine‐dependent anthranilate N ‐methyltransferase. SDS–PAGE of the purified enzyme revealed a mass of 40 ± 2 kDa, corresponding to 40 059 Da for the translated polypeptide, whereas the catalytic activity was assigned to a homodimer. Alignments revealed closest relationships to catechol or caffeate O ‐methyltransferases at 56% and 55% identity (73% similarity), respectively, with little similarity (∼20%) to N ‐methyltransferases for purines, putrescine, glycine, or nicotinic acid substrates. Notably, a single Asn residue replacing Glu that is conserved in caffeate O ‐methyltransferases determines the catalytic efficiency. The recombinant enzyme showed narrow specificity for anthranilate, and did not methylate catechol, salicylate, caffeate, or 3‐ and 4‐aminobenzoate. Moreover, anthraniloyl CoA was not accepted. As Ruta graveolens acridone synthase also does not accept anthraniloyl CoA as a starter substrate, the anthranilate N ‐methylation prior to CoA activation is a key step in acridone alkaloid formation, channelling anthranilate from primary into secondary branch pathways, and holds promise for biotechnological applications. RT‐PCR amplifications and Western blotting revealed expression of the N ‐methyltransferase in all organs of Ruta plants, particularly in the flower and root, mainly associated with vascular tissues. This expression correlated with the pattern reported previously for expression of acridone synthase and acridone alkaloid accumulation.