logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (18)
  • Year
    • 1999 (1)
      2002 (1)
      2003 (1)
      2004 (3)
      2005 (1)
      2007 (1)
      2009 (1)
      2010 (1)
      2012 (2)
      2013 (2)
      2014 (1)
      2015 (1)
      2017 (1)
      2018 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
      LWT (0)
  • Author Sorted by frequency and by alphabetical order
    • Eschen-Lippold, L. (5)
      Scheel, D. (5)
      Knogge, W. (4)
      Lee, J. (4)
      Rosahl, S. (3)
      Altmann, S. (2)
      Farag, M. A. (2)
      Hause, B. (2)
      Nürnberger, T. (2)
      Wessjohann, L. A. (2)
      Westphal, L. (2)
      Atzorn, R. (1)
      Baier, M. C. (1)
      Baum, T. (1)
      Bethke, G. (1)
      Birschwilks, M. (1)
      Boettcher, A. (1)
      Dangl, J. L. (1)
      Delp, G. (1)
      Diezel, C. (1)
      Draper, J. (1)
      Ehrlich, A. (1)
      Fahmy, S. (1)
      Fehlberg, V. (1)
      Fischer, A. (1)
      Gao, L.-L. (1)
      Geissler, K. (1)
      Gheysen, G. (1)
      Glazebrook, J. (1)
      Haapalainen, M. (1)
      Halim, V. A. (1)
      Hohnjec, N. (1)
      Höfte, M. (1)
      Hückelhoven, R. (1)
      Jackson, L. F. (1)
      Katagiri, F. (1)
      Kenton, P. (1)
      Kirsten, S. (1)
      Kogel, K.-H. (1)
      Kyndt, T. (1)
      Küster, H. (1)
      Labib, R. M. (1)
      Leitner, A. (1)
      Lenz, F. (1)
      Li, C.-M. (1)
      Liedgens, H. (1)
      Linde, C. C. (1)
      Maamoun, A. A. (1)
      Matern, A. (1)
      McDonald, B. A. (1)
      Mur, L. A. J. (1)
      Nahar, K. (1)
      Nass, N. (1)
      Naumann, K. (1)
      Navarro-Quezada, A. (1)
      Noleto, C. (1)
      Parker, J. (1)
      Pecher, P. (1)
      Penselin, D. (1)
      Porzel, A. (1)
      Raghuram, B. (1)
      Romantschuk, M. (1)
      Roth, C. (1)
      Rouhara, I. (1)
      Schmelzer, E. (1)
      Schneeberger, K. (1)
      Schön, M. (1)
      Schürch, S. (1)
      Seiffert, U. (1)
      Sheikh, A. H. (1)
      Sinha, A. K. (1)
      Smith, F. A. (1)
      Smith, S. E. (1)
      Somssich, I. E. (1)
      Steiner-Lange, S. (1)
      Taira, S. (1)
      Tornero, P. (1)
      Trujillo, M. (1)
      Tsuda, K. (1)
      Töller, A. (1)
      Varet, A. (1)
      Vieweg, M. F. (1)
      Wasternack, C. (1)
      Weigel, D. (1)
      Wenzel, C. (1)
      Wiermer, M. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Mol. Plant Microbe Interact. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: LWT Remove all filters
Displaying results 1 to 10 of 18.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2

Publications

Farag, M. A.; Labib, R. M.; Noleto, C.; Porzel, A.; Wessjohann, L. A.; NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools LWT 90 491-498 (2018) DOI: 10.1016/j.lwt.2017.12.069
  • Abstract
  • BibText
  • RIS

Quantitative NMR metabolomics approach was developed to distinguish two cinnamon species (Ceylon Cinnamon, Cinnamomum verum and Chinese Cinnamon, Cinnamomum cassia) that are interchangeably used in food products. The results of the analyses of 10 bark accessions revealed for 9 key sensory metabolites, with (E)-cinnamaldehyde as the major form. Multivariate data analyses revealed for eugenol leading presence in C. verum versus fatty acid enrichment in C. cassia. This research provides the first NMR metabolites fingerprinting of the two major cinnamon resources. Compounds related to C. verum aroma and taste were identified and quantified that can be utilized as markers for the authentication of this valuable drug. Novel insight on metabolites mediating for C. verum antidiabetic effect is also presented.

Publications

Farag, M. A.; Maamoun, A. A.; Ehrlich, A.; Fahmy, S.; Wessjohann, L. A.; Assessment of sensory metabolites distribution in 3 cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques LWT 80 145-154 (2017) DOI: 10.1016/j.lwt.2017.02.014
  • Abstract
  • BibText
  • RIS

Among most propagated and worldwide cacti used for commercial (food) production is Opuntia ficus-indica. The present study aimed at investigating aroma compound and metabolites distribution in cactus fruits from 3 cultivars (cvs): red ‘Rose’, yellow-orange ‘Gialla’ and greenish-white ‘Bianca’ represented by both its pulp and skin samples. Two methods were applied including UV-vis fingerprinting versus gas chromatography coupled to mass spectrometry (GC-MS). Betalains predominated in red fruits, whereas carotenoids and chlorophyll were more abundant in orange and green fruits, respectively, as revealed from their crude extracts UV absorption spectra. Volatiles were profiled using headspace solid-phase micro-extraction (SPME) coupled to GC-MS. 40 Volatiles were identified with short chain aldehydes (25–32%) and acids (25–29%) as the major volatile classes. Cultivars exhibited comparable aroma profiles suggesting that volatiles cannot serve as a chemical fingerprint to distinguish between cvs. Primary metabolites mediating for fruit taste and nutritional value viz. sugars and amino acid were profiled using GC-MS post silylation with 82 identified metabolites. Glucose (62%) and fructose (16%) were found to predominate sugar composition, whereas proline was the major amino acid (3–8%). Multivariate data analyses revealed for betalain and disaccharides enrichment i.e., turanose and sucrose in fruit skin versus proline, talopyranose and lyxopyranose abundance in pulp tissue.

Publications

Geissler, K.; Eschen-Lippold, L.; Naumann, K.; Schneeberger, K.; Weigel, D.; Scheel, D.; Rosahl, S.; Westphal, L.; Mutations in the EDR1 Gene Alter the Response of Arabidopsis thaliana to Phytophthora infestans and the Bacterial PAMPs flg22 and elf18 Mol. Plant Microbe Interact. 28 122-133 (2015) DOI: 10.1094/MPMI-09-14-0282-R
  • Abstract
  • BibText
  • RIS

Mechanistically, nonhost resistance of Arabidopsis thaliana against the oomycete Phytophthora infestans is not well understood. Besides PEN2 and PEN3, which contribute to penetration resistance, no further components have been identified so far. In an ethylmethane sulphonate–mutant screen, we mutagenized pen2-1 and screened for mutants with an altered response to infection by P. infestans. One of the mutants obtained, enhanced response to Phytophthora infestans6 (erp6), was analyzed. Whole-genome sequencing of erp6 revealed a single nucleotide polymorphism in the coding region of the kinase domain of At1g08720, which encodes the putative MAPKKK ENHANCED DISEASE RESISTANCE1 (EDR1). We demonstrate that three independent lines with knock-out alleles of edr1 mount an enhanced response to P. infestans inoculation, mediated by increased salicylic acid signaling and callose deposition. Moreover, we show that the single amino acid substitution in erp6 causes the loss of in vitro autophosphorylation activity of EDR1. Furthermore, growth inhibition experiments suggest a so-far-unknown involvement of EDR1 in the response to the pathogen-associated molecular patterns flg22 and elf18. We conclude that EDR1 contributes to the defense response of A. thaliana against P. infestans. Our data position EDR1 as a negative regulator in postinvasive nonhost resistance.

Publications

Sheikh, A. H.; Raghuram, B.; Eschen-Lippold, L.; Scheel, D.; Lee, J.; Sinha, A. K.; Agroinfiltration by Cytokinin-Producing Agrobacterium sp. Strain GV3101 Primes Defense Responses in Nicotiana tabacum Mol. Plant Microbe Interact. 27 1175-1185 (2014) DOI: 10.1094/MPMI-04-14-0114-R
  • Abstract
  • BibText
  • RIS

Transient infiltrations in tobacco are commonly used in plant studies, but the host response to different disarmed Agrobacterium strains is not fully understood. The present study shows that pretreatment with disarmed Agrobacterium tumefaciens GV3101 primes the defense response to subsequent infection by Pseudomonas syringae in Nicotiana tabacum. The presence of a trans-zeatin synthase (tzs) gene in strain GV3101 may be partly responsible for the priming response, as the tzs-deficient Agrobacterium sp. strain LBA4404 only weakly imparts such responses. Besides inducing the expression of defense-related genes like PR-1 and NHL10, GV3101 pretreatment increased the expression of tobacco mitogen-activated protein kinase (MAPK) pathway genes like MEK2, WIPK (wound-induced protein kinase), and SIPK (salicylic acid-induced protein kinase). Furthermore, the GV3101 strain showed a stronger effect than the LBA4404 strain in activating phosphorylation of the tobacco MAPK, WIPK and SIPK, which presumably prime the plant immune machinery. Lower doses of exogenously applied cytokinins increased the activation of MAPK, while higher doses decreased the activation, suggesting a balanced level of cytokinins is required to generate defense response in planta. The current study serves as a cautionary warning for plant researchers over the choice of Agrobacterium strains and their possible consequences on subsequent pathogen-related studies.

Publications

Schön, M.; Töller, A.; Diezel, C.; Roth, C.; Westphal, L.; Wiermer, M.; Somssich, I. E.; Analyses of wrky18 wrky40 Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for Golovinomyces orontii Resistance and a Loss-of Resistance Towards Pseudomonas syringae pv. tomato AvrRPS4 Mol. Plant Microbe Interact. 26 758-767 (2013) DOI: 10.1094/MPMI-11-12-0265-R
  • Abstract
  • BibText
  • RIS

Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40–mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40–mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.

Publications

Nahar, K.; Kyndt, T.; Hause, B.; Höfte, M.; Gheysen, G.; Brassinosteroids Suppress Rice Defense Against Root-Knot Nematodes Through Antagonism With the Jasmonate Pathway Mol. Plant Microbe Interact. 26 106-115 (2013) DOI: 10.1094/MPMI-05-12-0108-FI
  • Abstract
  • BibText
  • RIS

The importance of phytohormone balance is increasingly recognized as central to the outcome of plant–pathogen interactions. Next to their well-known developmental role, brassinosteroids (BR) were recently found to be involved in plant innate immunity. In this study, we examined the role of BR in rice (Oryza sativa) innate immunity during infection with the root-knot nematode Meloidogyne graminicola, and we studied the inter-relationship with the jasmonate (JA) pathway. Exogenous epibrassinolide (BL) supply at low concentrations induced susceptibility in the roots whereas high concentrations of BL enforced systemic defense against this nematode. Upon high exogenous BL supply on the shoot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) confirmed a strong feedback inhibitory effect, leading to reduced BR biosynthesis in the root. Moreover, we demonstrate that the immune suppressive effect of BR is at least partly due to negative cross-talk with the JA pathway. Mutants in the BR biosynthesis or signaling pathway accumulate slightly higher levels of the immediate JA-precursor 12-oxo-phytodienoic acid, and qRT-PCR data showed that the BR and JA pathway are mutually antagonistic in rice roots. Collectively, these results suggest that the balance between the BR and JA pathway is an effective regulator of the outcome of the rice–M. graminicola interaction.

Publications

Kirsten, S.; Navarro-Quezada, A.; Penselin, D.; Wenzel, C.; Matern, A.; Leitner, A.; Baum, T.; Seiffert, U.; Knogge, W.; Necrosis-Inducing Proteins of Rhynchosporium commune, Effectors in Quantitative Disease Resistance Mol. Plant Microbe Interact. 25 1314-1325 (2012) DOI: 10.1094/MPMI-03-12-0065-R
  • Abstract
  • BibText
  • RIS

The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an “active” NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.

Publications

Bethke, G.; Pecher, P.; Eschen-Lippold, L.; Tsuda, K.; Katagiri, F.; Glazebrook, J.; Scheel, D.; Lee, J.; Activation of the Arabidopsis thaliana Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22 Mol. Plant Microbe Interact. 25 471-480 (2012) DOI: 10.1094/MPMI-11-11-0281
  • Abstract
  • BibText
  • RIS

Mitogen-activated protein kinases (MAPK) mediate cellular signal transduction during stress responses, as well as diverse growth and developmental processes in eukaryotes. Pathogen infection or treatments with conserved pathogen-associated molecular patterns (PAMPs) such as the bacterial flagellin-derived flg22 peptide are known to activate three Arabidopsis thaliana MAPK: MPK3, MPK4, and MPK6. Several stresses, including flg22 treatment, are known to increase MPK11 expression but activation of MPK11 has not been shown. Here, we show that MPK11 activity can, indeed, be increased through flg22 elicitation. A small-scale microarray for profiling defense-related genes revealed that cinnamyl alcohol dehyrogenase 5 requires MPK11 for full flg22-induced expression. An mpk11 mutant showed increased flg22-mediated growth inhibition but no altered susceptibility to Pseudomonas syringae, Botrytis cinerea, or Alternaria brassicicola. In mpk3, mpk6, or mpk4 backgrounds, MPK11 is required for embryo or seed development or general viability. Although this developmental deficiency in double mutants and the lack of or only subtle mpk11 phenotypes suggest functional MAPK redundancies, comparison with the paralogous MPK4 reveals distinct functions. Taken together, future investigations of MAPK roles in stress signaling should include MPK11 as a fourth PAMP-activated MAPK.

Publications

Eschen-Lippold, L.; Altmann, S.; Rosahl, S.; DL-β-Aminobutyric Acid–Induced Resistance of Potato Against Phytophthora infestans Requires Salicylic Acid but Not Oxylipins Mol. Plant Microbe Interact. 23 585-592 (2010) DOI: 10.1094/MPMI-23-5-0585
  • Abstract
  • BibText
  • RIS

Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-β-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid–derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.

Publications

Hohnjec, N.; Lenz, F.; Fehlberg, V.; Vieweg, M. F.; Baier, M. C.; Hause, B.; Küster, H.; The Signal Peptide of the Medicago truncatula Modular Nodulin MtNOD25 Operates as an Address Label for the Specific Targeting of Proteins to Nitrogen-Fixing Symbiosomes Mol. Plant Microbe Interact. 22 63-72 (2009) DOI: 10.1094/MPMI-22-1-0063
  • Abstract
  • BibText
  • RIS

The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from different legumes. On the cellular level, MtNOD25 is only transcribed in the infected cells of root nodules, and this activation is mediated by a 299-bp minimal promoter containing an organ-specific element. By expressing mGFP6 translational fusions in transgenic nodules, we show that MtNOD25 proteins are exclusively translocated to the symbiosomes of infected cells. This specific targeting only requires an N-terminal MtNOD25 SP that is highly conserved across a family of legume-specific symbiosome proteins. Our finding sheds light on one possible mechanism for the delivery of host proteins to the symbiosomes of infected root nodule cells and, in addition, defines a short molecular address label of only 24 amino acids whose N-terminal presence is sufficient to translocate proteins across the peribacteroid membrane.

  • 1
  • 2

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail