logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (107)
      Books and chapters (8)
      Preprints (4)
  • Year
    • 1989 (2)
      1990 (2)
      1991 (1)
      1992 (3)
      1993 (6)
      1994 (10)
      1995 (19)
      1996 (26)
      1997 (54)
      1998 (46)
      1999 (51)
      2000 (55)
      2001 (48)
      2002 (76)
      2003 (69)
      2004 (73)
      2005 (84)
      2006 (90)
      2007 (96)
      2008 (89)
      2009 (78)
      2010 (74)
      2011 (71)
      2012 (105)
      2013 (92)
      2014 (121)
      2015 (116)
      2016 (126)
      2017 (119)
      2018 (114)
      2019 (151)
      2020 (104)
      2021 (103)
      2022 (105)
      2023 (93)
      2024 (80)
      2025 (8)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • 0 (4)
      Front. Plant Sci. (4)
      Methods Mol. Biol. (4)
      Nat. Commun. (4)
      bioRxiv (4)
      Eur. J. Med. Chem. (3)
      Int. J. Mol. Sci. (3)
      Molecules (3)
      Plant Cell (3)
      Plant J. (3)
      J. Exp. Bot. (2)
      Nat. Prod. Commun. (2)
      New Phytol. (2)
      Plant Physiol. (2)
      Plant Soil (2)
      Protein Peptide Lett. (2)
      Sci. Rep. (2)
      Acta Neuropathol. Commun. (1)
      Anal. Methods (1)
      Angew. Chem. (1)
      Angew. Chem. Int. Ed. (1)
      Anti-Cancer Agents Med. Chem. (1)
      Appl. Organomet. Chem. (1)
      BBA-Gen. Subjects (1)
      BIOspektrum (1)
      BMC Bioinformatics (1)
      BMC Plant Biol. (1)
      Bio Protoc. (1)
      Biochimie (1)
      Bioinformatics (1)
      Bull. Chem. Soc. Ethiop. (1)
      Chem. Biol. Drug Des. (1)
      Chem. Commun. (1)
      Chem.-Eur. J. (1)
      ChemistrySelect (1)
      Chemosphere (1)
      Curr. Bioact. Comp. (1)
      Curr. Opin. Plant Biol. (1)
      Ecol. Evol. (1)
      Ecol. Indic. (1)
      F1000Research (1)
      Food Funct. (1)
      Front. Microbiol. (1)
      Genes Dev. (1)
      Inorganics (1)
      J. Agr. Food Chem. (1)
      J. Biol. Chem. (1)
      J. Biotechnol. (1)
      J. Cheminform. (1)
      J. Gen. Virol. (1)
      J. Heterocyclic Chem. (1)
      J. Inorg. Biochem. (1)
      J. Neurosci. Meth. (1)
      J. Plant Physiol. (1)
      J. Proteome Res. (1)
      J. Struct. Chem. (1)
      J. Veg. Sci. (1)
      JPC - J. Planar Chromat. (1)
      LWT (1)
      Mar. Drugs (1)
      Medicines (1)
      Mol. Plant (1)
      Mol. Plant Pathol. (1)
      Nanoscale (1)
      Nat. Prod. Res. (1)
      Nat. Rev. Microbiol. (1)
      Neurobiol. Dis. (1)
      OncoImmunology (1)
      Org. Biomol. Chem. (1)
      Org. Lett. (1)
      PLOS Genet. (1)
      PLOS ONE (1)
      PLOS Pathog. (1)
      PeerJ (1)
      Phytochem. Lett. (1)
      Plant Cell Environ. (1)
      Plant Mol. Biol. (1)
      Plant Signal Behav. (1)
      Planta (1)
      Proteomics (1)
      Rec. Nat. Prod. (1)
      S. Afr. J. Bot. (1)
      Serb. J. Exp. Clin. Res. (1)
      Synlett (1)
      Tetrahedron (1)
      Trends Plant Sci. (1)
      Turk. J. Biol. (1)
  • Author Sorted by frequency and by alphabetical order
    • Wessjohann, L. A. (26)
      Kaluđerović, G. N. (11)
      Brandt, W. (9)
      Hoehenwarter, W. (8)
      Frolov, A. (7)
      Majovsky, P. (7)
      Tissier, A. (7)
      Arnold, N. (6)
      Farag, M. A. (6)
      Neumann, S. (6)
      Scheel, D. (6)
      Wessjohann, L. (6)
      Dissmeyer, N. (5)
      Lee, J. (5)
      Porzel, A. (5)
      Rivera, D. G. (5)
      Ruttkies, C. (5)
      Trujillo, M. (5)
      Abel, S. (4)
      Balcke, G. U. (4)
      Bruelheide, H. (4)
      Bürstenbinder, K. (4)
      Lennicke, C. (4)
      Pahnke, J. (4)
      Puentes, A. R. (4)
      Seliger, B. (4)
      Strehmel, N. (4)
      Zmejkovski, B. B. (4)
      Bilova, T. (3)
      Biverstål, H. (3)
      Csuk, R. (3)
      Dietz, S. (3)
      Dräger, B. (3)
      Eschen-Lippold, L. (3)
      Gago-Zachert, S. (3)
      Haider, S. (3)
      Hause, B. (3)
      Herz, K. (3)
      Jandt, U. (3)
      Lichtenfels, R. (3)
      Loesche, A. (3)
      Meyer, A. (3)
      Moreno, P. (3)
      Pantelić, N. (3)
      Poeschl, Y. (3)
      Quint, M. (3)
      Rahn, J. (3)
      Sabo, T. J. (3)
      Schmidt, J. (3)
      Soboleva, A. (3)
      Treutler, H. (3)
      Vikhnina, M. (3)
      Wasternack, C. (3)
      Westphal, H. (3)
      Baginsky, S. (2)
      Birkemeyer, C. (2)
      Bjornson, M. (2)
      Brüning, T. (2)
      Cascante, M. (2)
      Cerquides, J. (2)
      Christ, G. (2)
      Dagne, E. (2)
      Dehesh, K. (2)
      Delker, C. (2)
      Eissa, T. F. (2)
      El-Seedi, H. R. (2)
      Flores, R. (2)
      Fobofou, S. A. T. (2)
      Franke, K. (2)
      Furlan, G. (2)
      Gogol-Döring, A. (2)
      Gonzalez-Beltran, A. (2)
      Grishina, T. (2)
      Grosse, I. (2)
      Hankemeier, T. (2)
      Haug, K. (2)
      Heller, L. (2)
      Helm, S. (2)
      Jansone, B. (2)
      Kale, N. (2)
      Kipp, A. P. (2)
      Klecker, M. (2)
      Kreye, O. (2)
      Krohn, M. (2)
      Kultima, K. (2)
      Laub, A. (2)
      Marillonnet, S. (2)
      Melaku, Y. (2)
      Mitra, D. (2)
      Morejon, M. C. (2)
      Möller, B. (2)
      Mönchgesang, S. (2)
      Müller, A. S. (2)
      Nakagami, H. (2)
      Naumann, C. (2)
      Nettling, M. (2)
      Paudel, G. (2)
      Plötner, R. (2)
      Reisberg, M. (2)
      Rocca-Serra, P. (2)
  • Year
  • Type of publication
Search narrowed by: Year: 2017 Remove all filters
Displaying results 51 to 60 of 119.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • ....
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • ....

Publications

Balcke, G. U.; Bennewitz, S.; Bergau, N.; Athmer, B.; Henning, A.; Majovsky, P.; Jiménez-Gómez, J. M.; Hoehenwarter, W.; Tissier, A.; Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites Plant Cell 29 960-983 (2017) DOI: 10.1105/tpc.17.00060
  • Abstract
  • BibText
  • RIS

Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2. Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.

Publications

Anwar, S.; Crouch, R. A.; Awadh Ali, N. A.; Al-Fatimi, M. A.; Setzer, W. N.; Wessjohann, L.; Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties Nat. Prod. Res. 31 2158-2163 (2017) DOI: 10.1080/14786419.2016.1277346
  • Abstract
  • BibText
  • RIS

The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC–MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC50 = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.

Publications

Anh, N. T. H.; Tuan, N. V.; Thien, D. D.; Quan, T. D.; Tam, N. T.; Lien, G. T. K.; Franke, K.; Thuy, T. T.; Sung, T. V.; Chemical Constituents of Chirita drakei Nat. Prod. Commun. 12 563-566 (2017) DOI: 10.1177/1934578X1701200425
  • Abstract
  • BibText
  • RIS

Chirita drakei Burtt (now accepted as Primulina drakei (B.L.Burtt) Mich.Möller & A.Weber) is growing on limestone mountain slopes of Ha Long Bay islands in Vietnam. The chemical investigation of the aerial parts of C. drakei led to the isolation and structural elucidation of two new compounds named chiridrakoside A (1) and chiridrakoside B (2) besides twelve known compounds comprising five phenylethanoid glycosides (3–7), two lignans (8, 9), a phenyl propanoid (10), an anthraquinone (11), a furan derivative (12) and two triterpenes (13, 14). All described compounds, except 4, 5 and 11, were obtained for the first time from the genera Chirita or Primulina. The cytotoxic activity of the isolated compounds was evaluated against the four human cancer cell lines KB (mouth epidermal carcinoma), HepG2 (hepatocellular carcinoma), Lu (lung carcinoma) and MCF7 (breast carcinoma). Epoxyconiferyl alcohol (10) exhibited cytotoxic activity against the tested cell lines (IC50 from 46 to 128 μM).

Publications

Ali, N. A. A.; Chhetri, B. K.; Dosoky, N. S.; Shari, K.; Al-Fahad, A. J. A.; Wessjohann, L.; Setzer, W. N.; Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils Medicines 4 17 (2017) DOI: 10.3390/medicines4020017
  • Abstract
  • BibText
  • RIS

Background:Ocimum forskolei and Teucrium yemense (Lamiaceae) are used in traditional medicine in Yemen. Methods: The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Ocimum forskolei Benth. (EOOF) and two different populations of Teucrium yemense Deflers., one collected from Dhamar province (EOTY-d), and another collected from Taiz (EOTY-t) were investigated. The antimicrobial activities of the oils were evaluated against several microorganisms with the disc diffusion test or the broth microdilution test. The essential oils were screened for in-vitro cytotoxic activity against human tumor cells. EOOF and EOTY-d were screened for free-radical-inhibitory activity using the DPPH radical scavenging assay. Results: Sixty-four compounds were identified in (EOOF) representing 100% of the oil content with endo-fenchol (31.1%), fenchone (12.2%), τ-cadinol (12.2%), and methyl (E)-cinnamate (5.1%) as the major compounds. In EOTY-d, 67 compounds were identified, which made up 91% of the total oil. The most abundant constituents were (E)-caryophyllene (11.2%), α-humulene (4.0.%), γ-selinene (5.5%), 7-epi-α-selinene (20.1%), and caryophyllene oxide (20.1%), while the major compounds in EOTY-t were α-pinene (6.6%), (E)-caryophyllene (19.1%) α-humulene (6.4%), δ-cadinene (6.5%), caryophyllene oxide (4.3%), α-cadinol (9.5%), and shyobunol (4.6%). The most sensitive microorganisms for EOOF were B. subtilis, S. aureus, and C. albicans with inhibition zones of 34, 16, and 24 mm and MIC values of, 4.3 mg/mL, 4.3 mg/mL, and 8.6 mg/mL, respectively. EOTY-t showed antimicrobial activity against S. aureus, B. cereus, A. niger, and B. cinerea with MIC values of 0.156, 0.156, 0.313 and 0.313 mg/mL, respectively. Neither essential oil showed remarkable radical inhibition (IC50 = 31.55 and 31.41 μL/mL). EOTY-d was active against HT-29 human colorectal adenocarcinoma cell lines with IC50 = 43.7 μg/mL. Consistent with this, EOTY-t was active against both MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Conclusions: The antimicrobial activity of Ocimum forskolei essential oil against B. subtilis and C. albicans is consistent with its traditional use in Yemeni traditional medicine to treat skin infections. Both O. forskolei and T. yemense show wide variations in their respective essential oil compositions; there remains a need to investigate both species botanically, genetically, and phytochemically more comprehensively.

Publications

Aleksis, R.; Oleskovs, F.; Jaudzems, K.; Pahnke, J.; Biverstål, H.; Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity Biochimie 140 176-192 (2017) DOI: 10.1016/j.biochi.2017.07.011
  • Abstract
  • BibText
  • RIS

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.

Publications

Al Shweiki, M. R.; Mönchgesang, S.; Majovsky, P.; Thieme, D.; Trutschel, D.; Hoehenwarter, W.; Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance J. Proteome Res. 16 1410-1424 (2017) DOI: 10.1021/acs.jproteome.6b00645
  • Abstract
  • BibText
  • RIS

We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.

Publications

Abel, S.; Phosphate scouting by root tips Curr. Opin. Plant Biol. 39 168-177 (2017) DOI: 10.1016/j.pbi.2017.04.016
  • Abstract
  • BibText
  • RIS

Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.

Publications

Herz, K.; Dietz, S.; Haider, S.; Jandt, U.; Scheel, D.; Bruelheide, H.; Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures J. Veg. Sci. 28 705-716 (2017) DOI: 10.1111/jvs.12534
  • Abstract
  • BibText
  • RIS

QuestionsTo what extent is trait variation in grasses and forbs driven by land‐use intensity, climate, soil conditions and plant diversity of the local neighbourhood? Do grass and forb species differ in the degree of intraspecific trait variation?LocationManaged grasslands in three regions of Germany.MethodsUsing a phytometer approach, we raised 20 common European grassland species (ten forbs and ten grasses) and planted them into 54 plots of different land‐use types (pasture, meadow, mown pasture). After 1 yr in the field, we measured above‐ and below‐ground plant functional traits. Linear mixed effects models (LMEM) were used to identify the most powerful predictors for every trait. Variation partitioning was applied to assess the amount of inter‐ and intraspecific trait variation in grasses and forbs explained by environmental conditions (land‐use intensity, climate and soil conditions) and plant species diversity of the local neighbourhood.ResultsFor 12 out of the 14 traits studied, either land‐use intensity or local neighbourhood diversity were predictors in the best LMEM. Land‐use intensity had considerably stronger effects than neighbourhood diversity. Root dry matter content and root phosphorus concentration of forbs were more affected by land‐use intensity than those of grasses. For almost all traits, intraspecific trait variation of grasses was much higher than that of forbs, while traits of forbs varied more among species. Overall, inter‐ and intraspecific variation was of the same magnitude.ConclusionThe similar magnitude of intra‐ and interspecific trait variation suggests that both sources should be considered in grassland studies at a scale similar to that of our study. The high amount of intraspecific trait variation that was explained by environmental factors and local neighbourhood diversity clearly demonstrates the high potential of species to adjust to local conditions, which would be ignored when only considering species mean trait values.

Publications

Hempel, F.; Stenzel, I.; Heilmann, M.; Krishnamoorthy, P.; Menzel, W.; Golbik, R.; Helm, S.; Dobritzsch, D.; Baginsky, S.; Lee, J.; Hoehenwarter, W.; Heilmann, I.; MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain Plant Cell 29 3030-3050 (2017) DOI: 10.1105/tpc.17.00543
  • Abstract
  • BibText
  • RIS

An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.

Publications

Heller, L.; Kahnt, M.; Loesche, A.; Grabandt, P.; Schwarz, S.; Brandt, W.; Csuk, R.; Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase Eur. J. Med. Chem. 126 652-668 (2017) DOI: 10.1016/j.ejmech.2016.11.056
  • Abstract
  • BibText
  • RIS

A set of thirtyfive 30-norlupan derivatives (2–36) was prepared from the natural triterpenoid platanic acid (PA), and the hydroxyl group at C-3, the carboxyl group at C-17 and the carbonyl group at C-20 were modified. These derivatives were tested for their inhibitory activity for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) using Ellman's assay. Extra enzyme kinetic studies were performed. The most active compound was (3β, 20R)-3-acetyloxy-20-amino-30-norlupan-28-oate (32) showing a Ki value of 0.01 ± 0.003 μM for BChE. This compound proved to be a selective (FB = 851), mixed-type inhibitor for BChE.

  • ....
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • ....

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail