- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
There is growing interest in the application of plant functional trait-based approaches for development of sustainable land-use strategies. In this context, one crucial task is to identify and measure plant traits, which respond to land-use intensity (response traits) and simultaneously have an impact on ecosystem functions (effect traits). We hypothesized that species-specific leaf chemical composition, which may function both as response and effect trait, can be derived from Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy tools in combination with multivariate statistical methods We investigated leaf ATR-FTIR spectra of two grasses, Poa pratensis L. and Dactylis glomerata L., and one forb, Achillea millefolium L. collected in grassland plots along a land-use intensity gradient in three regions of Germany. ATR-FTIR spectra appear to function as biochemical fingerprints unique to each species. The spectral response to land-use intensity was not consistent among species and less apparent in the two grasses than in the forb species. Whereas land-use intensification enhanced protein and cellulose content in A. millefolium, giving rise to changes in six spectral bands in the frequency range of 1088–1699 cm−1, only cellulose content increased in D. glomerata, affecting the bands of 1385–1394 cm−1. Poa pratensis spectra exhibited minimal changes under the influence of land-use, only in the spectral bands of 1373–1375 cm−1 associated with suberin-like aliphatic compounds. Our findings suggest that some species’ leaf chemical composition is responsive to land-use intensity, and thus, may have a predictive value for ecosystem services provided by those species within grassland vegetation (i.e., herbage yield quality).