- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Many proteins from plant pathogens affecting the interaction with the host plant have dual functions: they promote virulence on the host species and they function as avirulence determinants by eliciting defense reactions in host cultivars expressing the appropriate resistance genes. In viruses all proteins encoded by the small genomes can be expected to be essential for viral development in the host. However, in different plants surveillance systems have evolved that are able to recognize most of these proteins. Bacteria and fungi have specialized pathogenicity and virulence genes. Many of the latter were originally identified through the resistance gene-dependent elicitor activity of their products. Their role in virulence only became apparent when they were inactivated or transferred to different microbes or after their ectopic expression in host plants. Many microbes appear to maintain these genes despite their disadvantageous effect, introducing only few mutations to abolish the interaction of their products with the plant recognition system. This has been interpreted as been indicative of a virulence function of the gene products that is not impaired by the mutations. Alternatively, in particular in bacteria there is now evidence that pathogenicity was acquired through horizontal gene transfer. Genes supporting virulence in the donor organism's original host appear to have traveled along. Being gratuitous in the new situation, they may have been inactivated without loss of any beneficial function for the pathogen.